摘要:
设P为一给定的对称正交矩阵, 记SAR\+n\-P={A∈R\+\{n×n\}|A\+T=A,(PA)\+T=-PA}. 该文考虑下列问题问题Ⅰ〓给定X∈R\+\{n×m, Λ=diag(λ\-1,λ\-2,…, λ\-m)∈R\+\{m×m\}, 求A∈SAR\+n\-P使AX=XΛ,问题Ⅱ〓给定X,B∈R\+\{n×m, 求A∈SAR\+n\-P使
‖AX-B‖=min.问题Ⅲ设[AKA~]∈R\+\{n×n\},求A\+*∈S\-E使 ‖[AKA~]-A\+*‖=inf[DD(X]A∈S\-E[DD)]‖[AKA~]-A‖, 其中S\-E为问题Ⅱ的解集合, ‖·‖表示Frobenius范数.该文得到了问题Ⅰ有解的充要条件及解集合的表达式, 给出了解集合S\-E的通式和逼近解A\+*的具体表达式.
中图分类号: