摘要:
该文考虑多滞量和正负系数中立型方程
[x(t)-Σn=1lCA(t)x(t-rn)]+Σi=lmPi(t)x(t-τi)-Σj=lnQj(t)x(t-σj)=0,其中CA(k=1,…,l),Pi(i=1,…,m),Qj(j=1…,n)∈C([t0,∞),R+),0 ≤ τl < … < τm,0 ≤ σ1 < … < σn,0 < r1 < … < rl.作者获得了当t→∞时,上面方程每个解都趋向于一个常数的充分条件.该文推广了文[5]的结果.
陶有山, 高国柱. 具多滞量和正负系数中立型微分方程解的渐近性质[J]. 数学物理学报, 1998, 18(S1): 119-124.
Tao Youshan, Gao Guozhu. Asymptotic Behavior of Solutions for Neutral Differential Equation with Several Delay Arguments and Positive-negative Coefficients[J]. Acta mathematica scientia,Series A, 1998, 18(S1): 119-124.