[1] Haacke E M, Xu Y, Cheng Y C, et al. Susceptibility weighted imaging (SWI)[J]. Magn Reson Med, 2004, 52(1): 612-618. [2] Liu T. Spincemaille P, de Rochefort L, et al. Calculation of susceptibility through multiple orientation sampling (COS-MOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI[J]. Magn Reson Med, 2009, 61(1): 196-204. [3] Liu T, Wisnieff C, Lou M, et al. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping[J]. Magn Reson Med, 2013, 69(2): 467-476. [4] Ferdinand S, Andreas D, Berengar W L, et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?[J]. Neuroimage, 2011, 54(4): 2 789-2 807. [5] de Rochefort L, Liu T, Kressler B, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[J]. Magn Reson Med, 2010, 63(1): 194-206. [6] Li J Q, Chang S X, Liu T, et al. Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping[J]. Magn Reson Med, 2012, 68(5): 1 563-1 569. [7] Wang A-li(王阿莉), Lin Jian-zhong(林建忠), Liu Wei-jun(刘伟俊), et al. Quantitative susceptibility mapping(定量磁化率成重建方法及其应用)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(1): 133-154. [8] Bilgic B, Pfefferbaum A, Rohlfing T W, et al. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping[J]. Neuroimage, 2012, 59(3): 2 625-2 635. [9] Tan H, Liu T, Wu Y, et al. Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping[J]. Invest Radiol, 2014, 49(7): 498-504. [10] Lim I A, Faria A V, Li X, et al. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures[J]. Neuroimage, 2013, 82: 449-469. [11] Deistung A, Schweser F, Wiestler B, et al. Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma[J]. PLoS One, 2013, 8(3): e57924. [12] Chen W, Zhu W, Kovanlikaya I, et al. Intracranial calcifications and hemorrhages: Characterization with quantitative susceptibility mapping[J]. Radiology, 2014, 270(2): 496-505. [13] Liu T, Surapaneni K, Lou M, et al. Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping[J]. Radiology, 2012, 262(1): 269-278. [14] Ge Y, Zhang Z, Lu H, et al. Characterizing brain oxygen metabolism in patients with multiple sclerosis with T2-relaxation-under-spin-tagging MRI[J]. J Cereb Blood Flow Metab, 2012, 32(3): 403-412. [15] Nordsmark M, Bentzen S M, Rudat V, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study[J]. Radiother Oncol, 2005, 77(1): 18-24. [16] Leenders K L, Beaney R P, Brooks D J, et al. Dexamethasone treatment of brain tumor patients: effects on regional cerebral blood flow, blood volume, and oxygen utilization[J]. Neurology, 1985, 35(11): 1 610-1 616. [17] Baron J C, Bousser M G, Rey A, et al. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography[J]. Stroke, 1981, 12(4): 454-459. [18] Sobesky J, Zaro W O, Lehnhardt F G, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke[J]. Stroke, 2005, 36(5): 980-985. [19] Heiss W D, Kracht L, Grond M, et al. Early [(11)C] Flumazenil/H(2)O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy[J]. Stroke, 2000, 31(2): 366-369. [20] Haacke E M, Tang J, Neelavalli J, et al. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation[J]. J Magn Reson Imaging, 2010, 32(3): 663-676. [21] Ferdinand S,Karsten S, Andreas D, et al. Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain[J]. Neuroimage, 2012, 62(3): 2 083-2 100. [22] Xu B, Liu T, Spincemaille P, et al. Flow compensated quantitative susceptibility mapping for venous oxygenation imaging[J]. Magn Reson Med, 2013, 72(2): 438-445. [23] Haacke E M. Magnetic Resonance Imaging: Physical Principle and Sequence Design (2nd ed.)[M]. America: John Wiley &Sons, 1999. [24] Yamada K, Naruse S, Nakajima K, et al. Flow velocity of the cortical vein and its effect on functional brain MRI at 1.5 T: preliminary results by cine-MR venography [J]. J Magn Reson Imaging, 1997, 7(2): 347-352. [25] Dong Fang(董芳), Pei Meng-chao(裴梦超), Wang Qian-feng(王前锋), et al. Gradient echo imaging of the human brain: respiratory induced artifacts and navigator echo correction(颅脑梯度回波成像: 呼吸伪影和导航回波矫正)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(3): 321-330. [26] Chavhan G B, Babyn P S, Thomas B, et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications[J]. Radiographics, 2009, 29(5): 1 433-1 449. [27] Liu Z, Liao H, Yin J, et al. Using R2* values to evaluate brain tumours on magnetic resonance imaging: preliminary results[J]. Eur Radiol, 2014, 24(3): 693-702. [28] Liu T, Xu W, Spincemaille P, et al. Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for quantitative susceptibility mapping in MRI[J]. IEEE Trans Med Imaging, 2012, 31(3): 816-824. [29] Liu J, Liu T, de Rochefort L, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map[J]. Neuroimage, 2012, 59(3): 2 560- 2 568. [30] Liu T, Liu J, de Rochefort L, et al. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging[J]. Magn Reson Med, 2011, 66(3): 777-783. [31] Comroe J H Jr. Textbook the Lung: Clinical Physiology and Pulmonary Function Tests (2nd ed.)[M]. Chicago: Year Book Medical Publishers, 1955. [32] Wang X F, Zhao W J. Measurement of multi-wavelength pulse oxygen saturation based on dynamic spectroscopy[J]. Spectrosc Spect Anal, 2014, 34(5): 1 323-1 326. |