[1] MOHAN J, KRISHNAVENI V, GUO Y H, et al. A survey on the magnetic resonance image denoising methods[J]. Biomed Signal Proces, 2014, 9:56-69. [2] DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3):425-455. [3] DONOHO D L. De-noising by soft-thresholding[J]. IEEE T Inform Theory, 1995, 3(41):613-627. [4] PIZURICA A, WINK A M, VANSTEENKISTE E, et al. A review of wavelet denoising in MRI and ultrasound brain imaging[J]. Current Med Imaging Rev, 2006, 2(2):247-260. [5] MANJON J V, COUPEB P, BUADES A, et al. New methods for MRI denoising based on sparseness and self-similarity[J]. Med Image Anal, 2012, 16(1):18-27. [6] BAO L J, ROBINI M, LIU W Y, et al. Structure-adaptive sparse denoising for diffusion-tensor MRI[J]. Med Image Anal, 2013, 17(4):442-457. [7] AHARON M, ELAD M, BRUCKSTEIN A. rmK-SVD:an algorithm for designing over complete dictionaries for sparse representation[J]. IEEE T Signal Proces, 2006, 54(11):4311-4322. [8] ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Trans Image Process, 2006, 15(12):3736-3745. [9] BUADES A, COLL B, MOREL J M, et al. A review of image denoising algorithms, with a new one, Multiscale Model[J]. Siam Journal on Multiscale Modeling & Simulation, 2005, 4(2):490-530. [10] MANJÓN J V, COUPÉ P, BUADES A, et al. New methods for MRI denoising based on sparseness and self-similarity[J]. Med Image Anal, 2012, 16(1):18-27. [11] CAI B, LIU W, ZHENG Z, et al. A new similarity measure for non-local means denoising[M]. ZHA H, CHEN X, WANG L, et al. Computer vision. communications in computer and information science. Heidelberg:Springer, 2015, 546:306-316. [12] LI H J, SUEN C Y. A novel Non-local means image denoising method based on grey theory[J]. Pattern Recogn, 2016, 49:237-248. [13] PRASATH V B S, KALAVATHI P. Adaptive nonlocal filtering for brain MRI restoration[M]. THAMPI S, BANDYOPADHYAY S, KRISHNAN S, et al. Advances in signal processing and intelligent recognition systems. Switzerland:Springer International Publishing, 2016, 425:571-580. [14] MANJON J V, COUPE P, MARTI-BONMATI L, et al. Adaptive non-local means denoising of MR images with spatially varying noise levels[J]. J Magn Reson Imaging, 2010, 31(1):192-203. [15] COUPE P, YGER P, PRIMA S, et al. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images[J]. IEEE Trans Med Imaging, 2008, 27(4):425-441. [16] MAHMOUDI M, SAPIRO G. Fast image and video denoising via nonlocal means of similar neighborhoods[J]. IEEE Signal Proc Let, 2005, 12(12):839-842. [17] LI W J, XIE H B, YAN X, et al. MR image average based on local offset correction[J]. Chinese J Magn Reson, 2017, 34(3):294-301. 李文静, 谢海滨, 严序, 等. 基于局部位移校正的磁共振图像相干平均[J]. 波谱学杂志, 2017, 34(3):294-301. [18] HE L L, GREENSHIELDS I R. A nonlocal maximum likelihood estimation method for rician noise reduction in MR images[J]. IEEE Trans Med Imaging, 2009, 28(2):165-172. [19] SALMON J. On two parameters for denoising with non-local means[J]. IEEE Signal Proc Let, 2010, 17(3):269-272. [20] VAN DE VILLE D, KOCHER M. Nonlocal means with dimensionality reduction and sure-based parameter selection[J]. IEEE T Image Process, 2011, 20(9):2683-2690. [21] http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html[OL] [22] WANG Z, SIMONCELLI E P, BOVIK A C, et al. Multiscale structural similarity for image quality assessment[C]. Pacific Grove:Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, 2004. DOI:10.1109/ACSSC.2003. 1292216 |