Chinese Journal of Magnetic Resonance ›› 2018, Vol. 35 ›› Issue (4): 505-519.doi: 10.11938/cjmr20182664
Previous Articles Next Articles
TAO Quan1, YI Pei-wei1,2, WEI Guo-jing1, FENG Yan-qiu1
Received:
2018-06-12
Online:
2018-12-05
Published:
2018-08-27
CLC Number:
TAO Quan, YI Pei-wei, WEI Guo-jing, FENG Yan-qiu. pH Imaging Based on Chemical Exchange Saturation Transfer: Principles, Methods, Applications and Recent Progresses[J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 505-519.
[1] ASHBY B S. pH studies in human malignant tumours[J]. The Lancet, 1966, 288(7458):312-315. [2] LI C, XIA J S, WEI X B, et al. pH-activated near-infrared fluorescence nanoprobe imaging tumors by sensing the acidic microenvironment[J]. Adv Funct Mater, 2010, 20(14):2222-2230. [3] VĀVERE A L, BIDDLECOMBE G B, SPEES W M, et al. A novel technology for the imaging of acidic prostate tumors by positron emission tomography[J]. Cancer Res, 2009, 69(10):4510-4516. [4] WIKE-HOOLEY J L, VAN DEN BERG A P, VAN DER ZEE J, et al. Human tumour pH and its variation[J]. Eur J Cancer Clin Oncol, 1985, 21(7):785-791. [5] YOO B, PAGEL M D. An overview of responsive MRI contrast agents for molecular imaging[J]. Front Biosci, 2008, 13:1733-1752. [6] LIU G S, SONG X L, CHAN K W Y, et al. Nuts and bolts of chemical exchange saturation transfer MRI[J]. NMR Biomed, 2013, 26(7):810-828. [7] VAN ZIJL P C, YADAV N N. Chemical exchange saturation transfer (CEST):what is in a name and what isn't?[J]. Magn Reson Med, 2011, 65(4):927-948. [8] YANG Y G, CHEN Z, CAI C B, et al. Factors affecting chemical exchange saturation transfer imaging on 1.5 T Clinical MRI scanners[J]. Chinese J Magn Reson, 2017, 34(3):275-282. 杨永贵, 陈忠, 蔡聪波, 等. 1.5 T磁共振化学交换饱和转移成像的影响因素分析[J]. 波谱学杂志, 2017, 34(3):275-282. [9] CHEN L Q, PAGEL M D. Evaluating pH in the extracellular tumor microenvironment using CEST MRI and other imaging methods[J]. Adv Radiol, 2015:206405. [10] HANCU I, DIXON W T, WOODS M, et al. CEST and PARACEST MR contrast agents[J]. Acta Radiol, 2010, 51(8):910-923. [11] LINDEMAN L R, RANDTKE E A, HIGH R A, et al. A comparison of exogenous and endogenous CEST MRI methods for evaluating in vivo pH[J]. Magn Reson Med, 2018, 79(5):2766-2772. [12] WARD K M, ALETRAS A H, BALABAN R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1):79-87. [13] GRAD J, BRYANT R G. Nuclear magnetic cross-relaxation spectroscopy[J]. J Magn Reson, 1990, 90(1):1-8. [14] HINGORANI D V, BERNSTEIN A S, PAGEL M D. A review of responsive MRI contrast agents:2005-2014[J]. Contrast Media Mol Imaging, 2015, 10(4):245-265. [15] WARD K M, ALETRAS A H, BALABAN R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1):79-87. [16] AIME S, CALABI L, BIONDI L, et al. Iopamidol:Exploring the potential use of a well-established x-ray contrast agent for MRI[J]. Magn Reson Med, 2005, 53(4):830-834. [17] LONGO D L, DASTRÙ W, DIGILIO G, et al. Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys:In vivo studies in mice at 7 T[J]. Magn Resona Med, 2011, 65(1):202-211. [18] CHEN M M, CHEN C Y, SHEN Z W, et al. Extracellular pH is a biomarker enabling detection of breast cancer and liver cancer using CEST MRI[J]. Oncotarget, 2017, 8(28):45759. [19] CHEN L Q, HOWISON C M, JEFFERY J J, et al. Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI[J]. Magn Reson Med, 2014, 72(5):1408-1417. [20] LONGO D L, SUN P Z, CONSOLINO L, et al. A general MRI-CEST ratiometric approach for pH imaging:demonstration of in vivo pH mapping with iobitridol[J]. J Am Chem Soc, 2014, 136(41):14333-14336. [21] MCMAHON M T, GILAD A A, ZHOU J Y, et al. Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP):pH calibration for poly-L-lysine and a starburst dendrimer[J]. Magn Reson Med, 2006, 55(4):836-847. [22] YANG X, SONG X L, RAY BANERJEE S, et al. Developing imidazoles as CEST MRI pH sensors[J]. Contrast Media Mol Imaging, 2016, 11(4):304-312. [23] MELKUS G, GRABAU M, KARAMPINOS D C, et al. Ex vivo porcine model to measure pH dependence of gagCEST in the inter-vertebral disc[J]. Magn Resona Med, 2014, 71(5):1743. [24] ZHANG S R, ZHOU K J, HUANG G, et al. A novel class of polymeric pH-responsive MRI CEST agents[J]. Chem Commun, 2013, 49(57):6418-6420. [25] AIME S, BARGE A, DELLI CASTELLI D, et al. Paramagnetic lanthanide (Ⅲ) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications[J]. Magn Reson Med, 2002, 47(4):639-648. [26] SHETH V R, LIU G S, LI Y G, et al. Improved pH measurements with a single PARACEST MRI contrast agent[J]. Contrast Media Mol Imaging, 2012, 7(1):26-34. [27] LIU G S, LI Y G, SHETH V R, et al. Imaging in vivo extracellular pH with a single paramagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent[J]. Mol Imaging, 2012, 11(1):47-57. [28] DELLI CASTELLI D, FERRAUTO G, CUTRIN J C, et al. In vivo maps of extracellular pH in murine melanoma by CEST-MRI[J]. Magn Reson Med, 2014, 71(1):326-332. [29] RANCAN G, DELLI CASTELLI D, AIME S. MRI CEST at 1T with large µeff Ln3+ complexes Tm3+-HPDO3A:An efficient MRI pH reporter[J]. Magn Reson Med, 2016, 75(1):329-336. [30] KRCHOVÁ T, GÁLISOVÁ A, JIRÁK D, et al. Ln (Ⅲ)-complexes of a DOTA analogue with an ethylenediamine pendant arm as pH-responsive PARACEST contrast agents[J]. Dalton Trans, 2016, 45(8):3486-3496. [31] ZHOU J Y, LAL B, WILSON D A, et al. Amide proton transfer (APT) contrast for imaging of brain tumors[J]. Magn Reson Med, 2003, 50(6):1120-1126. [32] ZHOU J Y, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8):1085-1090. [33] SUN P Z, SORENSEN A G. Imaging pH using the chemical exchange saturation transfer (CEST) MRI:correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH[J]. Magn Reson Med, 2008, 60(2):390-397. [34] MCVICAR N, LI A X, GONCALVES D F, et al. Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI[J]. J Cereb Blood Flow Metab, 2014, 34(4):690-698. [35] SUN P Z, ZHOU J Y, SUN W Y, et al. Detection of the ischemic penumbra using pH-weighted MRI[J]. J Cerebral Blood Flow Metab, 2007, 27(6):1129-1136. [36] WARD K M, BALABAN R S. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST)[J]. Magn Reson Med, 2000, 44(5):799-802. [37] LONGO D L, BUSATO A, LANZARDO S, et al. Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent[J]. Magn Reson Med, 2013, 70(3):859-864. [38] CHEN L Q, RANDTKE E A, JONES K M, et al. Evaluations of tumor acidosis within in vivo tumor models using parametric maps generated with acidoCEST MRI[J]. Mol Imaging Biol, 2015, 17(4):488-496. [39] MOON B F, JONES K M, CHEN L Q, et al. A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH[J]. Contrast media & molecular imaging, 2015, 10(6):446-455. [40] MÜLLER-LUTZ A, KHALIL N, SCHMITT B, et al. Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner[J]. MAGMA, 2014, 27(6):477-485. [41] JONES K M, RANDTKE E A, YOSHIMARU E S, et al. Clinical translation of tumor acidosis measurements with AcidoCEST MRI[J]. Mol Imaging Biol, 2017, 19(4):617-625. [42] WU Y, ZHOU I Y, IGARASHI T, et al. A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using iopamidol[J]. Magn Reson Med, 2018, 79(3):1553-1558. [43] ALBATANY M, LI A, MEAKIN S, et al. Dichloroacetate induced intracellular acidification in glioblastoma:in vivo detection using AACID-CEST MRI at 9.4 Tesla[J]. J Neurooncol, 2018, 136(2):255-262. [44] SUN P Z, WANG E, CHEUNG J S. Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI-correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH[J]. Neuroimage, 2012, 60(1):1-6. [45] GOERKE S, ZAISS M, BACHERT P. Characterization of creatine guanidinium proton exchange by water-exchange (WEX) spectroscopy for absolute-pH CEST imaging in vitro[J]. NMR Biomed, 2014, 27(5):507-518. [46] MCMAHON M T, GILAD A A, ZHOU J Y, et al. Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP):pH calibration for poly-L-lysine and a starburst dendrimer[J]. Magn Reson Med, 2006, 55(4):836-847. [47] SUN P Z, WANG Y, DAI Z Z, et al. Quantitative chemical exchange saturation transfer (qCEST) MRI-RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate[J]. Contrast Media Mol Imaging, 2014, 9(4):268-275. [48] HENKELMAN R M, STANISZ G J, GRAHAM S J. Magnetization transfer in MRI:a review[J]. NMR Biomed, 2001, 14(2):57-64. [49] KALTSCHNEE L, KNOLL K, SCHMIDTS V, et al. Extraction of distance restraints from pure shift NOE experiments[J]. J Magn Reson, 2016, 271:99-109. [50] ZHANG M, LU J H, CAI C B, et al. Effects of lipids signals on nuclear overhauser enhancement contrast imaging at 7 T[J]. Chinese J Magn Reson, 2015, 32(4):606-617. 张苗, 卢建华, 蔡聪波, 等. 7 T下脂肪对基于NOE的磁共振对比成像的影响[J]. 波谱学杂志, 2015, 32(4):606-617. [51] JONES C K, SCHLOSSER M J, VAN ZIJL P, et al. Amide proton transfer imaging of human brain tumors at 3T[J]. Magn Reson Med, 2006, 56(3):585-592. |
[1] | WEI Guo-jing, YI Pei-wei, TAO Quan, FENG Yan-qiu. Comparisons of Different CEST Quantification Metrics Applied in Acute Parkinson's Disease Mouse Model [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 195-207. |
[2] | LIU Ying, SONG Ming-hui, WANG Kun, ZHANG Hao-wei. A Magnetic Resonance Receiver System Design Based on All Programmable System-on-a-Chip and LabVIEW [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 475-485. |
[3] | WANG Hong-zhi, ZHAO Di, YANG Li-qin, XIA Tian, ZHOU Xiao-yue, MIAO Zhi-ying. An Approach for Training Data Enrichment and Batch Labeling in AI+MRI Aided Diagnosis [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 447-456. |
[4] | CHEN Hai-yan, ZHAO Shi-long, LI Xiao-nan, LIU Guo-qiang, HU Li-li, LIU Tao. B1 Mapping on Low-Field Permanent Magnet MRI Scanner [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 498-504. |
[5] | ZHAI Guo-qiang, ZHANG Miao, BO Bin-shi, WANG Yi, FAN Ming-xia, LI Jian-qi. Quantifying Liver Fat with Combined Complex-Based and Magnitude-Based Water-Fat Separation [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 417-426. |
[6] | HUANG Zhao-hui, ZHANG Zhi, CHEN Li, CHEN Jun-fei, ZHANG Zhen, CHEN Fang, LIU Chao-yang. A Time-Division Multiplexing Design for Gradient Preemphasis Module in Magnetic Resonance Imaging Scanner [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 465-474. |
[7] | ZHANG Bo, XIE Hai-bin, YAN Xu, LI Wen-jing, YANG Guang. Rotation Invariant Non-Local Means for Noise Reduction in Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 162-169. |
[8] | SUN Wei-hang, SUN Yu, WANG Feng, WANG Chao-hong, YANG Tao. Optimization of Delays Alternating with Nutation for Tailored Excitation (DANTE) Sequence in Engineering [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 150-161. |
[9] | CUI Yan, XIAO Liang. High Accuracy Generation and Test of B0 Signals on Magnetic Resonance Imaging Spectrometer [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 170-177. |
[10] | HUANG Li-jie, SONG Yang, ZHAO Xian-ce, XIE Hai-bin, WU Dong-mei, YANG Guang. A New Combination Scheme of GRAPPA and Compressed Sensing for Accelerated Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2018, 35(1): 31-39. |
[11] | LUO Qing, ZHANG Cheng-xiu, LI Wen-jing, ZHENG Hui, XIE Hai-bin, YANG Guang. Design and Implementation of a Novel Processing Pipeline for Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2018, 35(1): 40-51. |
[12] | SONG Rui, HE Yan-fa, ZHANG Bo. A Method for Eddy Current Field Measurement in Permanent Magnet Magnetic Resonance Imaging Systems [J]. Chinese Journal of Magnetic Resonance, 2018, 35(1): 52-59. |
[13] | LI Yu-zhou, ZHANG Zhe, CHAN Kevin Chuen-wing, GUO Hua. A Novel Method for Magnetic Resonance Ocular Imaging Using Super-Resolution Reconstruction [J]. Chinese Journal of Magnetic Resonance, 2017, 34(4): 439-452. |
[14] | LU Yao, ZHENG Xin-wei, ZHONG Kai. Research Progresses in Development of Thermo-Sensitive MRI Contrast Agent [J]. Chinese Journal of Magnetic Resonance, 2017, 34(4): 528-536. |
[15] | HU Kun, NING Rui-peng. A Pulse Programmer with Independent Delay Capability [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 347-356. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 769
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 358
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||