[1] Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J]. Nature, 2000, 408(6 808): 86-89.[2] Johnson S M, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell, 2005, 120(5): 635-647.[3] Charles D J, Aurora E K, Giovanni S, et al. The let-7 microRNA represses cell proliferation pathways in human cells[J]. Cancer Res, 2007, 67(17): 7 713-7 722.[4] James E T, Richard I G. How does Lin28 let-7 control development and disease[J]? Trends Cell Biol, 2012, 22(9): 474-482.[5] Yu J, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5 858): 1 917-1 920.[6] Viswanathan S R, Powers J T, Einhorn W, et al. Lin28 promotes transformation and is associated with advanced human malignancies[J]. Nat Genet, 2009, 41(7): 843-848.[7] Peng S, Maihle N J, Huang Y, et al. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer[J]. Oncogene, 2010, 29(14): 2 153-2 159.[8] Permuth-Wey J, Kim D, Tsai Y Y, et al. Lin28B polymorphisms influence susceptibility to epithelial ovarian cancer[J]. Cancer Res, 2011, 71(11): 3 896-3 903.[9] King C E, Cuatrecasas M, Castells A, et al. Lin28B promotes colon cancer progression and metastasis[J]. Cancer Res, 2011, 71(12): 4 260-4 268. [10] Heo I, Joo C, Cho J, et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA[J]. Mol Cell, 2008, 32(2): 276-284.[11] Heo I, Joo C, Kim Y K, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation[J]. Cell, 2009, 138(4): 696-708.[12] Polesskaya A, Cuvellier S, Naguibneva I, et al. Lin28 binds IGF2 mRNA and participates in skeletal myogenesis by increasing translation efficiency[J]. Genes Dev, 2007, 21(9): 1 125-1 138.[13] Thornton J E, Gregory R I. How does Lin28 let-7 control development and disease[J]? Trends Cell Biol, 2012, 22(9): 474-482.[14] Viswanathan S R, Daley G Q. Lin28: A microRNA regulator with a macro role[J]. Cell, 2010, 140(4): 445-449.[15] Loughlin F E, Gebert L F, Towbin, H, et al. Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28[J]. Nat Struct Mol Biol, 2012, 19(1): 84-89.[16] Nam Y, Chen, C, Gregory R I, et al. Molecular basis for interaction of let-7 microRNAs with Lin28[J]. Cell, 2011, 147(5): 1 080-1 091.[17] Bax A, Grzesiek S. Methodological advances in protein NMR[J]. Acc Chem Res, 1993, 26(4): 131-138.[18] Clore G M, Gronenborn A. Determining the structures of large proteins and protein complexes by NMR[J]. Trends Biotechnol, 1998, 16(1): 22-34.[19] Delaglio F, Grzesiek S, Vuister G W, et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes[J]. J Biomol NMR, 1995, 6(3): 277-293.[20] Kuszewski J, Clore G M. Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force[J]. J Magn Reson, 2000, 146(2): 249-254.[21] Cornilescu G, Delaglio F, Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology[J]. J Biomol NMR, 1999, 13(3): 289-302.[22] Neuhaus D, Nakaseko Y, Schwabe J W, et al. Solution structures of two zinc-finger domains from SWI5 obtained using two-dimensional 1H nuclear magnetic resonance spectroscopy. A zinc-finger structure with a third strand of beta-sheet[J]. J Mol Biol, 1992, 228(2): 637-651.[23] Cao C Y, Kwon K, Jiang Y L, et al. Solution structure and base perturbation studies reveal a novel mode of alkylated base recognition by 3-methyladenine DNA glycosylase I[J]. J Biol Chem, 2003, 278(48): 48 012-48 020. |