Chinese Journal of Magnetic Resonance ›› 2015, Vol. 32 ›› Issue (2): 308-317.doi: 10.11938/cjmr20150213
Previous Articles Next Articles
WEI Shu-yi,PAN Yun-ru,TSENG Tien-sheng,CHEN Chin-pan*
Received:
2015-03-02
Revised:
2015-05-08
Online:
2015-06-05
Published:
2015-06-05
About author:
*Corresponding author: CHEN Chin-pan, Tel: +886-2-27899162, E-mail: bmchinp@ibms.sinica.tw.
Supported by:
CLC Number:
WEI Shu-yi, PAN Yun-ru, TSENG Tien-sheng, CHEN Chin-pan?. The Extended Loop Reduces Ca2+-Binding Affinity on the Tellurite Resistance Protein TerZ from Klebsiella penumoniae[J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 308-317.
[1] Taylor D E. Bacterial tellurite resistance[J]. Trends Microbiol, 1999, 7(3): 111-115.[2] Chasteen T G, Fuentes D E, Tantalean J C, et al. Tellurite: history, oxidative stress, and molecular mechanisms of resistance[J]. FEMS Microbiol Rev, 2009, 33(4): 820-832.[3] Walter E G, Taylor D E. Plasmid-mediated resistance to tellurite: expressed and cryptic[J]. Plasmid, 1992, 27(1): 52-64.[4] Chen Y T, Chang H Y, Lai Y C, et al. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43[J]. Gene, 2004, 337: 189-198.[5] Whelan K F, Colleran E, Taylor D E. Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478[J]. J Bacteriol, 1995, 177(17): 5 016-5 027.[6] Valkovicova L, Vavrova S M, Mravec J, et al. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster “ter” from pathogenic Escherichia coli[J]. Antonie Van Leeuwenhoek, 2013, 104(6): 899-911.[7] Anantharaman V, Iyer L M, Aravind L. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing[J]. Mol Biosyst, 2012, 8(12): 3 142-3 165. [8] Pan Y R, Lou Y C, Seven A B, et al. NMR structure and calcium-binding properties of the tellurite resistance protein TerD from Klebsiella pneumoniae[J]. J Mol Biol, 2011, 405(5): 1 188-1 201.[9] Pan Y R. Structure as a Guide to Function: NMR Studies on Tellurite Resistance Proteins from Klebsiella pneumoniae[D]. Hsinchu: Institute of Bioinformatics and Structural Biology, College of Life Science, “National Tsing Hua University”, 2011.[10] Wu K M, Li L H, Yan J J, et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis[J]. J Bacteriol, 2009, 191(14): 4 492-4 501.[11] Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling[J]. Biophys J, 2000, 78(3): 1 606-1 619.[12] Delaglio F, Grzesiek S, Vuister G W, et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes[J]. J Biomol NMR, 1995, 6(3): 277-293.[13] Johnson B A, Blevins R A. NMR View: A computer program for the visualization and analysis of NMR data[J]. J Biomol NMR, 1994, 4(5): 603-614.[14] Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Res, 2014, 42(W1): W252-W258.[15] Sali A, Blundell T L. Comparative protein modelling by satisfaction of spatial restraints[J]. J Mol Biol, 1993, 234(3): 779-815.[16] Morris A L, MacArthur M W, Hutchinson E G., et al. Stereochemical quality of protein structure coordinates[J]. Proteins, 1992, 12(4): 345-364.[17] Laskowski R A, Macarthur M W, Moss D S, et al. Procheck: a program to check the stereochemical quality of protein structures[J]. J Appl Cryst, 1993, 26(0), 283-291.[18] Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks[J]. J Biomol NMR, 2013, 56(3): 227-241. |
[1] | ZHU Ze-hua, YAN Shi-ju, RUAN Yuan, HAN Bang-min. Segmentation of Prostate Magnetic Resonance Images Based on an Improved Distance Regularized Level Set Evolution (DRLSE) Model [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 447-455. |
[2] | LIU Si, AN Yan-peng, TANG Hui-ru. Effects of Lyophilization on the Metabonomic Phenotypes of Human Biofluids Characterized with NMR Analysis [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 484-489. |
[3] | LIU Peng, ZHONG Yu-min, WANG Li-jia. Automatic Segmentation of Right Ventricle in Cine Cardiac Magnetic Resonance Image Based on a Dense and Multi-Scale U-net Method [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 456-468. |
[4] | LI Ying-jun, YANG Hong-jing, LIU Ji-hong, JIN Kun, LIN Le-di, LIU Xue-jie. Assignments of NMR Spectral Data of a Novel Carbazole-Triazinoindole Based N-Acylhydrazone Derivative [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 496-504. |
[5] | ZHOU Zhong-gao, XIE Qian, YUAN Yang-yang, LI Jing, LU Dong-liang, CHEN Zheng-wang. An NMR Study of Chiral Glucopyranosyl-Based N-Heterocyclic Carbene-Palladium(II)-Pyridine Complex [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 505-514. |
[6] | KE Han-ping, CAI Hong-hao. High-Resolution Localized NMR Spectroscopy Based on Hadamard-Encoding [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 524-532. |
[7] | WANG Wan-ting, SU Shi, JIA Sen, LIANG Dong, WANG Hai-feng. Reconstruction of Simultaneous Multi-Slice MRI Data by Combining Virtual Conjugate Coil Technology and Convolutional Neural Network [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 407-421. |
[8] | LUO Yuan, ZHU Kai-ran. A Phase-Controllable Nuclear Quadrupole Resonance Excitation Pulse Generator [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 515-523. |
[9] | WU Ming-di, FENG Jie, JIA Hui-hui, WU Ji-zhi, ZHANG Xin, CHANG Yan, YANG Xiao-dong, SHENG Mao. MRI-Based Morphological Quantification of Developmental Dysplasia of the Hip in Children [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 434-446. |
[10] | BAO Qiu-lian, YANG Yun-han, WEI Ke-ke, LUO Jian-ping, GU Jie, LU Jia-jia, YANG Li-juan. Complexation Analysis of Water-Soluble Phosphate Salt Pillar[5]arene with Acridine Orange [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 469-483. |
[11] | CHENG Li-wei, WANG Lu-lu, ZHONG Kai. Application of fMRI in Transcranial Direct Current Stimulation Researches [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 533-546. |
[12] | DOU Meng-yu ZHAO Qi HOU Xiang-lin LIU Lei TANG Ming-xing WANG Ying-xiong. Structural Assignment and Quantitative Analysis for Hydrogenation Products of Anthracene by NMR Technology [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[13] | WEN Liang, LI Chun-fa. Structure and Configuration Analyses of a Nucleating Agent for Isotactic Polypropylene Crystallization [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 291-299. |
[14] | XU Peng-cheng, XIAO Liang. A Design Scheme for Data Transmission Module on Multi-Channel Magnetic Resonance Imaging Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 283-290. |
[15] | ZHAN Jia-ying, TU Zhang-ren, DU Xiao-feng, YUAN Bin, GUO Di, QU Xiao-bo. Progresses on Low-Rank Reconstruction for Non-Uniformly Sampled NMR Spectra [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 255-272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||