Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (1): 1-8.doi: 10.11938/cjmr20233069
• Articles • Previous Articles Next Articles
WANG Huan1,TAO Zhiqing2,3,JIANG Guosheng1,ZHANG Xu3,WANG Guan3(),HE Lichun2,3(),LIU Maili3
Received:
2023-05-16
Published:
2024-03-05
Online:
2023-06-30
Contact:
Tel: 86-18602761433, E-mail: CLC Number:
WANG Huan, TAO Zhiqing, JIANG Guosheng, ZHANG Xu, WANG Guan, HE Lichun, LIU Maili. In situ Investigation of HdeA in Bacterial Outer Membrane Vesicles Using NMR Spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 1-8.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 2
(a) SDS-PAGE gel plot of HdeA-OMVs samples, the arrow marked band (~10 kDa) is HdeA, and the remaining bands are pericytoplasmic proteins or outer membrane proteins in OMVs; (b) Liquid chromatogram of the HdeA from medium supernatant separated after size exclusion chromatography, in which the peak of the dimer HdeA is located at about 68 mL
Fig. 5
The CSP of residues of HdeA in OMVs. (a) Chemical shift perturbation difference of each residue of HdeA in the OMVs environment and dilute solution at pH 2.5 and pH 6.5, where * indicates that no credible CSP data could be obtained for this residue due to peak overlap; (b) Monomer structure of HdeA, in which residues with large variation in CSP values are marked in red
[1] |
CHRISTOPH W, ANDREAS P. Protein folding in the periplasm of Escherichia coli[J]. Mol Microbiol, 1994, 12: 685-692.
doi: 10.1111/mmi.1994.12.issue-5 |
[2] |
HONG W Z, WU Y E, FU X M, et al. Chaperone-dependent mechanisms for acid resistance in enteric bacteria[J]. Trends Microbiol, 2012, 20(7): 328-335.
doi: 10.1016/j.tim.2012.03.001 pmid: 22459131 |
[3] |
YU X C, HU Y F, DING J, et al. Structural basis and mechanism of the unfolding-induced activation of HdeA, a bacterial acid response chaperone[J]. J Biol Chem, 2019, 294(9): 3192-3206.
doi: 10.1074/jbc.RA118.006398 |
[4] |
GARRISON M A, CROWHURST K A. NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation[J]. Protein Sci, 2014, 23(2): 167-178.
doi: 10.1002/pro.2402 pmid: 24375557 |
[5] | ZHAN J H, HU Q, ZHU Q J, et al. Track the conformational change of unlabeled yeast cytochrome c in cell homogenate using NMR[J]. Chinese J Magn Reson, 2023, 40(1): 22-29. |
占建华, 胡琴, 朱勤俊, 等. 基于磁共振的胞浆中无标记酵母细胞色素c构象变化追踪[J]. 波谱学杂志, 2023, 40(1): 22-29. | |
[6] |
XING C Y, CHENGFENG Y, JIENV D, et al. Characterizations of the interactions between Escherichia coli periplasmic chaperone HdeA and its native substrates during acid stress[J]. Biochemistry, 2017, 56 (43): 5748-5757
doi: 10.1021/acs.biochem.7b00724 |
[7] |
SALMON L, STULL F, SAYLE S, et al. The mechanism of HdeA unfolding and chaperone activation[J]. J Mol Biol, 2018, 430(1): 33-40.
doi: S0022-2836(17)30540-5 pmid: 29138002 |
[8] |
ZHAI Z N, WU Q, ZHENG W W, et al. Roles of structural plasticity in chaperone HdeA activity are revealed by 19F NMR[J]. Chem Sci, 2016, 7: 2222.
doi: 10.1039/C5SC04297F |
[9] |
WANG G, YU G J, GAO D W. Protein conformational exchanges modulated by the environment of outer membrane vesicles[J]. J Phys Chem Lett, 2023, 14 (11): 2772-2777.
doi: 10.1021/acs.jpclett.3c00152 pmid: 36897994 |
[10] |
THOMA J, MANIOGLU S, KALBERMATTER D, et al. Protein-enriched outer membrane vesicles as a native platform for outer membrane protein studies[J]. Comm Biol, 2018, 1: 23.
doi: 10.1038/s42003-018-0027-5 |
[11] |
NIKAIDO H, VAARA M. Molecular basis of bacterial outer membrane permeability[J]. Microbiol Rev, 1985, 49(1): 1-32.
doi: 10.1128/mr.49.1.1-32.1985 pmid: 2580220 |
[12] |
SCHIRMER T. General and specific porins from bacterial outer membranes[J]. J Struct Biol, 1998, 121(2): 101-109.
pmid: 9615433 |
[13] |
KOEBNIK R, LOCHER K P, VAN GELDER P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell[J]. Mol Microbiol, 2000, 37(2): 239-253.
doi: 10.1046/j.1365-2958.2000.01983.x pmid: 10931321 |
[14] |
JOHANNES T, BJÖRN M B. High-resolution in situ NMR spectroscopy of bacterial envelope proteins in outer membrane vesicles[J]. Biochemistry, 2020, 59(17): 1656-1660.
doi: 10.1021/acs.biochem.9b01123 |
[15] |
VRANKEN W F, BOUCHER W, STEVENS T J, et al. The CCPN data model for NMR spectroscopy: development of a software pipeline[J]. Proteins, 2005, 59(4): 687-696.
doi: 10.1002/prot.v59:4 |
[16] | HOEKSTRA D, VAN DER LAAN J W, DE LEIJ L, et al. Release of outer membrane fragments from normally growing Escherichia coli[J]. Biochim Biophys Acta, 1976, 455(3): 889-899. |
[17] | MUG-OPSTELTEN D, WITHOLT B. Preferential release of new outer membrane fragments by exponentially growing Escherichia coli[J]. Biochim Biophys Acta, 1978, 508(2): 287-295. |
[18] |
KESTY N C, KUEHN M J. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles[J]. J Biol Chem, 2004, 279(3): 2069-2076.
doi: 10.1074/jbc.M307628200 |
[19] |
HAURAT M F, ADUSE-OPOKU J, RANGARAJAN M, et al. Selective sorting of cargo proteins into bacterial membrane vesicles[J]. J Biol Chem, 2011, 286(2): 1269-1276.
doi: 10.1074/jbc.M110.185744 pmid: 21056982 |
[20] | BONNINGTON K E, KUEHN M J. Protein selection and export via outer membrane vesicles[J]. Biochim Biophys Acta, 2014, 1843(8): 1612-1619. |
[21] |
SONG X, LV T, CHEN J, et al. Characterization of residue specific protein folding and unfolding dynamics in cells[J]. J Am Chem Soc, 2019, 141(29): 11363-11366.
doi: 10.1021/jacs.9b04435 pmid: 31305080 |
[22] |
TAKAOKA Y, KIOI Y, MORITO A, et al. Quantitative comparison of protein dynamics in live cells and in vitro by in-cell 19F NMR[J]. Chem Comm, 2013, 49(27): 2801-2803.
doi: 10.1039/c3cc39205h |
[23] |
WILLIAMSON M P. Using chemical shift perturbation to characterize ligand binding[J]. Prog Nucl Magn Reson Spectrosc, 2013, 73: 1-16.
doi: 10.1016/j.pnmrs.2013.02.001 |
[1] | WANG Ziwen, XIN Jiaxiang, WEI Daxiu, YAO Yefeng. Preparation Efficiency of Singlet States in Multi-spin Systems with Different Coupling Configurations [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 67-76. |
[2] | FU Fangyue, GUO Qingqian, FENG Xiaoyu, XU Jiayu, YAO Zekun, HU Tao, YANG Xiaodong, CHANG Yan. Development and Validation of Zero-field NMR Spectrometer Based on Compact Atomic Magnetometer [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 87-98. |
[3] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[4] | LIU Ying, LIN Ling, YUAN Binhua, ZHANG Haowei. Research Progress of MRI Gradient Waveform Generator [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 99-115. |
[5] | XU Xiaojie, CHEN Yan’an, LI Xufei, ZHANG Yuncai, ZHANG Yong, ZHAN Dongkai, PAN Ting. Structural Elucidation of Hybutimibe [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 43-55. |
[6] | CHEN Lei, LIU Hongbing, LIU Huili, WANG Liying. Quantitative Refocused INEPT Method Based on Simulated Annealing Optimization [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 30-42. |
[7] | CHEN Yang, ZHOU Meng, LI Yong, YANG Haijun. Independent Development of Sample Preparation Tools for Solid-state NMR [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 77-86. |
[8] | ZHOU Minxiong, QI Xuan, DU Bin, QI Dong, WANG Haijie, YANG Guang, Cai Wenmei, LIU Mengxiao, ZHANG Huiting, YAN Xu, NIE Shengdong, HE Yongsheng. Evaluation of the Impact of b-Value Ranges on Six Body Diffusion Models in Prostate Application [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 9-18. |
[9] | MA Huifang, TONG Yue, WANG Rongfan, XIE Jianwei. Discovery and Structural Characterization of Impurities in the Synthesis of Darolutamide Intermediate [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 56-66. |
[10] | LI Zhengzhe , GUO Liang , REN Xuhu . A Passive Shimming Method for Halbach Magnet Based on Numerical Optimization Algorithm [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[11] | GUO Xu, WANG Chenxu, ZHANG Xin , CHANG Yan , CUI Feng , GUO Qingqian, HU Tao, YANG Xiaodong . Semantic Audio-Visual Single-Trial Detection Based on the New Generation of Magnetoencephalography [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[12] | YANG Liming, WANG Yuanjun. Research Progress of Denoising Algorithms for Diffusion Tensor Images [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[13] | WANG Hui, WANG Tiantian, WANG Lijia. Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 435-447. |
[14] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
[15] | REN Hongjin, MA Yan, XIAO Liang. Knee Joint Model Construction and Local Specific Absorption Rate Estimation Based on Generative Adversarial Networks [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 410-422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||