Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (1): 87-98.doi: 10.11938/cjmr20233060
• Articles • Previous Articles Next Articles
FU Fangyue1,2,GUO Qingqian2,3,FENG Xiaoyu2,3,XU Jiayu1,2,YAO Zekun1,2,HU Tao2,3,4,YANG Xiaodong1,2,#(),CHANG Yan1,2,3,*()
Received:
2023-03-26
Published:
2024-03-05
Online:
2023-06-05
Contact:
# Tel: 18900616030, E-mail: CLC Number:
FU Fangyue, GUO Qingqian, FENG Xiaoyu, XU Jiayu, YAO Zekun, HU Tao, YANG Xiaodong, CHANG Yan. Development and Validation of Zero-field NMR Spectrometer Based on Compact Atomic Magnetometer[J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 87-98.
[1] |
BAHTI A, TELFAH A, LAMBERT J, et al. Optimal control pulses for subspectral editing in low field NMR[J]. J Magn Reson, 2021, 328: 106993.
doi: 10.1016/j.jmr.2021.106993 |
[2] |
JOHN W B, TENG WU, JAMES E, et al. Zero- to ultralow-field nuclear magnetic resonance J-spectroscopy with commercial atomic magnetometers[J]. J Magn Reson, 2020, 314: 106723.
doi: 10.1016/j.jmr.2020.106723 |
[3] |
TAYLER MICHALE C D, THOMAS T, SJOLANDER TOBIAS F, et al. Invited review article: instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field[J]. Rev Sci Instrum, 2017, 88(9): 091101.
doi: 10.1063/1.5003347 |
[4] |
TOBIAS F S, JOHN W B, DMITRY B, et al. Two-dimensional single- and multiple-quantum correlation spectroscopy in zero-field nuclear magnetic resonance[J]. J Magn Reson, 2020, 318: 106781.
doi: 10.1016/j.jmr.2020.106781 |
[5] |
ALLRED J C, LYMAN R N, KORNACK T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Phys Rev Lett, 2002, 89(13): 130801.
doi: 10.1103/PhysRevLett.89.130801 |
[6] | LEDBETTER M P, THEIS T, BLANCHARD J W, et al. Near-zero-field nuclear magnetic resonance[J]. Phys Rev B: Condens, 2011, 107(10): 107601. |
[7] |
JOHN W B, MICAH P L, THOMAS T, et al. High-resolution zero-field NMR J-spectroscopy of aromatic compounds[J]. J Am Chem Soc, 2013, 135(9): 3607-3612.
doi: 10.1021/ja312239v |
[8] |
LIU G B, LI X F, SUN X P, et al. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J]. J Magn Reson, 2013, 237: 158-163.
doi: S1090-7807(13)00263-2 pmid: 24225528 |
[9] |
JIANG M, ROMAN P F, WU T, et al. Magnetic gradiometer for the detection of zero- to ultralow-field nuclear magnetic resonance[J]. Phys Rev Appl, 2019, 11(2): 024005.
doi: 10.1103/PhysRevApplied.11.024005 |
[10] |
JIANG M, WU T, JOHN W B, et al. Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance[J]. Sci Adv, 2018, 4(6): 6327.
doi: 10.1126/sciadv.aar6327 pmid: 29922714 |
[11] |
BIAN J, JIANG M, CUI J Y, et al. Universal quantum control in zero-field nuclear magnetic resonance[J]. Phys Rev A, 2017, 95(5): 052342.
doi: 10.1103/PhysRevA.95.052342 |
[12] |
JIANG M, BIAN J, LIU X M, et al. Numerical optimal control of spin systems at zero magnetic field[J]. Phys Rev A, 2018, 97(6): 062118.
doi: 10.1103/PhysRevA.97.062118 |
[13] |
JI Y L, BIAN J, JIANG M, et al. Time-optimal control of independent spin-1/2 systems under simultaneous control[J]. Phys Rev A, 2018, 98(6): 062108.
doi: 10.1103/PhysRevA.98.062108 |
[14] | JIANG M, JI Y L, LI Q, et al. Multiparameter quantum metrology using strongly interacting spin systems[J]. arXiv.org, 2021, DOI: https://doi.org/10.48550/arXiv.2104.00211 |
[15] |
DANILA A B, MICHAEL C D, IRENE M R, et al. Zero-field nuclear magnetic resonance of chemically exchanging systems[J]. Nat Commun, 2019, 10: 3002.
doi: 10.1038/s41467-019-10787-9 pmid: 31278303 |
[16] |
PIOTR P, SZYMON P, DMITRY B, et al. Zero- to ultralow-field NMR spectroscopy of small biomolecules[J]. Anal Chem, 2021, 93(6): 3226-3232.
doi: 10.1021/acs.analchem.0c04738 pmid: 33448215 |
[17] |
SAVUKOV I M, ZOTEV V S, VOLEGOV P L, et al. MRI with an atomic magnetometer suitable for practical imaging applications[J]. J Magn Reson, 2009, 199(2): 188-191.
doi: 10.1016/j.jmr.2009.04.012 pmid: 19435672 |
[18] |
SHENG D, PERRY A R, KRZYZEWSKI S P, et al. A microfabricated optically-pumped magnetic gradiometer[J]. Appl Phys Lett, 2017, 110(3): 031106.
doi: 10.1063/1.4974349 |
[19] |
SHENG J W, WAN S G, SUN Y F, et al. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer[J]. Rev Sci Instrum, 2017, 88(9): 094304.
doi: 10.1063/1.5001730 |
[20] |
THEIS T, LEDBETTER M P, KERVERN G, et al. Zero-field NMR enhanced by parahydrogen in reversible exchange[J]. J Am Chem Soc, 2012, 134(9): 3987-3990.
doi: 10.1021/ja2112405 pmid: 22332806 |
[21] | CI J, YANG X, XIN J X, et al. Preparation and lifetime studies of the singlet state of five spins in hexene molecules used to guide the preservation of the parahydrogen-induced nuclear polarization state[J]. Chinese J Magn Reson, 2023, 40(1):30-38. |
慈杰, 杨雪, 辛家祥, 等. 用于指导仲氢诱导核极化状态保存的己烯分子中五自旋的单重态制备和寿命研究[J]. 波谱学杂志, 2023, 40(1): 30-38. | |
[22] |
BODENSTEDT S, MITCHELL M W, TAYLER M C D. Fast-field-cycling ultralow-field nuclear magnetic relaxation dispersion[J]. Nat Commun, 2021, 12: 4041.
doi: 10.1038/s41467-021-24248-9 pmid: 34193862 |
[23] |
DUDARI B B, JAMES E, JOHN W B, et al. Chemical reaction monitoring using zero-field nuclear magnetic resonance enables study of heterogeneous samples in metal containers[J]. Angew Chem Int Ed, 2020, 59(39): 17026-17032.
doi: 10.1002/anie.v59.39 |
[24] | ZHOU Q J, XIANG J F, TANG Y L, et al. Pure shift proton NMR spectroscopy and its applications[J]. Chinese J Magn Reson, 2016, 33(3): 502-513. |
周秋菊, 向俊锋, 唐亚林, 等. 纯位移核磁共振氢谱及其应用[J]. 波谱学杂志, 2016, 33(3): 502-513. | |
[25] | CHEN C Q, ZHANG X, GUO Q Q, et al. Moving wearable magnetoencephalography measurement study based on optically-pumped magnetometer[J]. Chinese J Magn Reson, 2022, 39(3): 337-344. |
陈春巧, 张欣, 郭清乾, 等. 基于原子磁力计的穿戴式脑磁图动态测量研究[J]. 波谱学杂志, 2022, 39(3): 337-344. | |
[26] |
WANG X F, ZHU M H, XIAO K D et al. Static weak magnetic field measurements based on low-field nuclear magnetic resonance[J]. J Magn Reson, 2019, 307: 106580.
doi: 10.1016/j.jmr.2019.106580 |
[27] |
BUSSANDRI S, ACOSTA R H, BULJUBASICH L. Radiofrequency encoded only parahydrogen spectroscopy[J]. J Magn Reson, 2020, 323: 106894.
doi: 10.1016/j.jmr.2020.106894 |
[28] | ZHANG S L, CHANG Y, YANG X D. Optimization of limited amplitude radiofrequency pulse with variance evaluation[J]. Chinese J Magn Reson, 2015, 32(3):462-469. |
张树林, 常严, 杨晓冬. 方差评估在幅值限制脉冲优化中的应用[J]. 波谱学杂志, 2015, 32(3): 462-469. | |
[29] | 江敏. 基于高灵敏度原子磁力计的超低场核磁共振研究[D]. 安徽: 中国科学技术大学, 2019. |
[30] |
BODENSTEDT S, MOLL D, GLOGGLER S, et al. Decoupling of spin decoherence paths near zero magnetic field[J]. J Phys Chem Lett, 2022, 13(1): 98-104.
doi: 10.1021/acs.jpclett.1c03714 |
[31] | TIMOTHY D W C. High-resolution NMR techniques in organic chemistry[M]. Elsevier, 2009. |
[1] | WANG Ziwen, XIN Jiaxiang, WEI Daxiu, YAO Yefeng. Preparation Efficiency of Singlet States in Multi-spin Systems with Different Coupling Configurations [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 67-76. |
[2] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[3] | LIU Ying, LIN Ling, YUAN Binhua, ZHANG Haowei. Research Progress of MRI Gradient Waveform Generator [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 99-115. |
[4] | WANG Huan, TAO Zhiqing, JIANG Guosheng, ZHANG Xu, WANG Guan, HE Lichun, LIU Maili. In situ Investigation of HdeA in Bacterial Outer Membrane Vesicles Using NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 1-8. |
[5] | XU Xiaojie, CHEN Yan’an, LI Xufei, ZHANG Yuncai, ZHANG Yong, ZHAN Dongkai, PAN Ting. Structural Elucidation of Hybutimibe [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 43-55. |
[6] | CHEN Lei, LIU Hongbing, LIU Huili, WANG Liying. Quantitative Refocused INEPT Method Based on Simulated Annealing Optimization [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 30-42. |
[7] | CHEN Yang, ZHOU Meng, LI Yong, YANG Haijun. Independent Development of Sample Preparation Tools for Solid-state NMR [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 77-86. |
[8] | ZHOU Minxiong, QI Xuan, DU Bin, QI Dong, WANG Haijie, YANG Guang, Cai Wenmei, LIU Mengxiao, ZHANG Huiting, YAN Xu, NIE Shengdong, HE Yongsheng. Evaluation of the Impact of b-Value Ranges on Six Body Diffusion Models in Prostate Application [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 9-18. |
[9] | MA Huifang, TONG Yue, WANG Rongfan, XIE Jianwei. Discovery and Structural Characterization of Impurities in the Synthesis of Darolutamide Intermediate [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 56-66. |
[10] | LI Zhengzhe , GUO Liang , REN Xuhu . A Passive Shimming Method for Halbach Magnet Based on Numerical Optimization Algorithm [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[11] | GUO Xu, WANG Chenxu, ZHANG Xin , CHANG Yan , CUI Feng , GUO Qingqian, HU Tao, YANG Xiaodong . Semantic Audio-Visual Single-Trial Detection Based on the New Generation of Magnetoencephalography [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[12] | YANG Liming, WANG Yuanjun. Research Progress of Denoising Algorithms for Diffusion Tensor Images [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[13] | WANG Hui, WANG Tiantian, WANG Lijia. Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 435-447. |
[14] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
[15] | REN Hongjin, MA Yan, XIAO Liang. Knee Joint Model Construction and Local Specific Absorption Rate Estimation Based on Generative Adversarial Networks [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 410-422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||