Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (1): 72-86.doi: 10.11938/cjmr20212898
• Articles • Previous Articles Next Articles
Received:
2021-03-22
Online:
2022-03-05
Published:
2021-07-05
Contact:
Li-jia WANG
E-mail:lijiawangmri@163.com
CLC Number:
Jian-sheng LIN,Li-jia WANG. Reconstruction of Displacement Field of Left Ventricle Combined with Biomechanical Model[J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 72-86.
Table 1
Comparison of functional parameters of LV between normal EF group and weak EF group
左心室功能参数 | 径向方向(峰值) | 圆周方向(峰值) | |||||||
RD/mm | RS/% | RV/(mm/s) | RSR/s?1 | CD/mm | CS/% | CV/(mm/s) | CSR/s?1 | ||
射血正常 | 4.86±1.10 | 20.30±6.50 | 28.15±8.28 | 1.40±0.68 | ?3.09±0.71 | ?19.43±5.61 | ?18.19±5.34 | ?1.22±0.52 | |
射血无力 | 3.29±0.92 | 11.62±5.65 | 19.69±5.60 | 0.78±0.32 | ?2.05±0.61 | ?10.86±4.63 | ?12.62±3.58 | ?0.63±0.24 | |
p值 | 1.46e-11 | 2.04e-10 | 5.24e-08 | 1.45e-07 | 7.67e-12 | 6.40e-13 | 2.86e-08 | 2.06e-10 |
Table 2
Comparison of functional parameters of LV under different constraints
约束条件 | 径向方向(峰值) | 圆周方向(峰值) | |||||||
RD/mm | RS/% | RV/(mm/s) | RSR/s?1 | CD/mm | CS/% | CV/(mm/s) | CSR/s?1 | ||
无约束 | 4.07±0.97 | 21.03±6.89 | 24.83±6.45 | 1.35±0.49 | ?2.31±0.56 | ?13.06±6.56 | ?14.07±3.63 | ?1.19±0.88 | |
平滑约束 | 4.23±0.96 | 18.76±5.05 | 25.72±6.48 | 1.10±0.35 | ?2.28±0.58 | ?10.51±3.68 | ?14.25±3.58 | ?0.76±0.33 | |
模型约束 | 4.08±1.01 | 15.96±6.08 | 23.92±6.94 | 1.09±0.50 | ?2.57±0.66 | ?15.15±5.12 | ?15.40±4.46 | ?0.93±0.38 |
1 |
DEMARINIS S . Cancer overtakes cardiovascular disease as leading cause of death in wealthy nations[J]. Explore, 2020, 16 (1): 6- 7.
doi: 10.1016/j.explore.2019.11.003 |
2 |
PANG Y , LYU J , YU C , et al. Risk factors for cardiovascular disease in the Chinese population: recent progress and implications[J]. Glo Hea J, 2020, 4 (3): 65- 71.
doi: 10.1016/j.glohj.2020.08.004 |
3 |
FRANGI A F , NIESSEN W J , VIERGEVER M A . Three-dimensional modeling for functional analysis of cardiac images: a review[J]. IEEE Trans Med Imaging, 2001, 20 (1): 2- 5.
doi: 10.1109/42.906421 |
4 |
WANG H , AMINI A A . Cardiac motion and deformation recovery from MRI: A Review[J]. IEEE Trans Med Imaging, 2012, 31 (2): 487- 503.
doi: 10.1109/TMI.2011.2171706 |
5 |
ZERHOUNI E A , PARISH D M , ROGERS W J , et al. Human heart: Tagging with MR imaging-A method for noninvasive assessment of myocardial motion[J]. Radiology, 1988, 169 (1): 59- 63.
doi: 10.1148/radiology.169.1.3420283 |
6 | CHEN T , WANG X , CHUNG S , et al. Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models[J]. IEEE Trans Med Imaging, 2009, 29 (1): 1- 11. |
7 |
LI M , GUPTA H , LLOYD S G , et al. A graph theoretic approach for computing 3D+ time biventricular cardiac strain from tagged MRI data[J]. Med Image Anal, 2017, 35, 46- 57.
doi: 10.1016/j.media.2016.06.006 |
8 |
YU Y , ZHANG S T , LI K , et al. Deformable models with sparsity constraints for cardiac motion analysis[J]. Med Image Anal, 2014, 18 (6): 927- 937.
doi: 10.1016/j.media.2014.03.002 |
9 |
TSADOK Y , FRIEDMAN Z , HALUSKA B A , et al. Myocardial strain assessment by cine cardiac magnetic resonance imaging using non-rigid registration[J]. Magn Reson Imaging, 2016, 34 (4): 381- 390.
doi: 10.1016/j.mri.2015.12.035 |
10 |
SHI P , SINUSAS A J , CONSTABLE R T , et al. Volumetric deformation analysis using mechanics-based data fusion: applications in cardiac motion recovery[J]. Int J Comput Vision, 1999, 35 (1): 87- 107.
doi: 10.1023/A:1008163112590 |
11 |
REMME E W , AUGENSTEIN K F , YOUNG A A , et al. Parameter distribution models for estimation of population based left ventricular deformation using sparse fiducial markers[J]. IEEE Trans Med Imaging, 2005, 24 (3): 381- 388.
doi: 10.1109/TMI.2004.842458 |
12 |
VERESS A I , GULLBERG G T , WEISS J A . Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration[J]. J Biomech Eng, 2005, 127 (7): 1195- 1207.
doi: 10.1115/1.2073677 |
13 |
BISTOQUET A , SKRINJAR O M . Left ventricular deformation recovery from cine MRI using a 4d incompressible model[J]. IEEE Trans Med Imaging, 2007, 26 (9): 1136- 1153.
doi: 10.1109/TMI.2007.903693 |
14 |
LIU H F , SHI P C . State-space analysis of cardiac motion with biomechanical constraints[J]. IEEE T Image Process, 2007, 16 (4): 901- 917.
doi: 10.1109/TIP.2007.891773 |
15 |
WONG K C L , WANG L W , ZHANG H Y , et al. Physiological fusion of functional and structural images for cardiac deformation recovery[J]. IEEE Trans Med Imaging, 2011, 30 (4): 990- 1000.
doi: 10.1109/TMI.2011.2105274 |
16 |
QIAO M Y , WANG Y Y , GUO Y , et al. Temporally coherent cardiac motion tracking from cine MRI: traditional registration method and modern CNN method[J]. Med Phys, 2020, 47 (9): 4189- 4198.
doi: 10.1002/mp.14341 |
17 | TANG J Y, GAN Z Y, YANG X. Cardiac motion tracking in short-axis MRI using siamese convolution network[C]//2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2019: 865-870. |
18 |
ZHANG N , YANG G , GAO Z F , et al. Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI[J]. Radiology, 2019, 291 (3): 606- 617.
doi: 10.1148/radiol.2019182304 |
19 |
ZHENG Q , DELINGETTE H , AYACHE N . Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow[J]. Med Image Anal, 2019, 56, 80- 95.
doi: 10.1016/j.media.2019.06.001 |
20 |
MANTILLA J J , PAREDES J L , BELLANGER J J , et al. Discriminative dictionary learning for local LV wall motion classification in cardiac MRI[J]. Expert Syst Appl, 2019, 129, 286- 295.
doi: 10.1016/j.eswa.2019.04.010 |
21 |
SEDERBERG T W , PARRY S R . Free-form deformation of solid geometric models[J]. Siggraph, 1986, 20 (4): 151- 160.
doi: 10.1145/15886.15903 |
22 |
COOTES T F , TAYLOR C J , COOPER D H , et al. Active shape models-their training and application[J]. Comput Vis Image Underst, 1995, 61 (1): 38- 59.
doi: 10.1006/cviu.1995.1004 |
23 | GONG J C , WANG Y , WANG Y J . A method for segmentation of glioma on multimodal magnetic resonance images based on wavelet fusion and deep learning[J]. Chinese J Magn Reson, 2020, 37 (2): 131- 143. |
宫进昌, 王宇, 王远军. 结合小波融合和深度学习的脑胶质瘤自动分割[J]. 波谱学杂志, 2020, 37 (2): 131- 143. | |
24 | LIU P , ZHONG Y M , WANG L J . Automatic segmentation of right ventricle in cine cardiac magnetic resonance image based on a dense and multi-scale U-net method[J]. Chinese J Magn Reson, 2020, 37 (4): 456- 468. |
刘鹏, 钟玉敏, 王丽嘉. 基于密集多尺度U-net网络的电影心脏磁共振图像右心室自动分割[J]. 波谱学杂志, 2020, 37 (4): 456- 468. | |
25 | GUCCIONE J M, MCCULLOCH A D. Finite element modeling of ventricular mechanics[M]. Springer New York, 1991. |
26 | PAPADEMETRIS X, SHI P C, DIONE D P, et al. Recovery of soft tissue object deformation from 3D image sequences using biomechanical models[C]//Proceedings of the 16th International Conference on Information Processing in Medical Imaging. Berlin, Heidelberg: Springer, 2000. |
27 |
SHI P C , SINUSAS A J . Point-tracked quantitative analysis of left ventricular surface motion from 3-D image sequences[J]. IEEE Trans Med Imaging, 2000, 19 (1): 36- 50.
doi: 10.1109/42.832958 |
28 |
PAPADEMETRIS , XENOPHON , SINUSAS , et al. Estimation of 3-D left ventricular deformation from medical images using biomechanical models[J]. IEEE Trans Med Imaging, 2002, 21 (7): 786- 800.
doi: 10.1109/TMI.2002.801163 |
29 | 杨桂通. 弹性力学[M]. 第2版 高等教育出版社, 2012. |
30 | GEMAN S , GERMAN D . Stochastic relaxation, gibbs distributions and the Bayesian restoration of images[J]. IEEE Trans Pattern Anal Mach Intell, 1984, 6, 721- 741. |
31 | ZHANG H Y , GAO Z , XU L , et al. A meshfree representation for cardiac medical image computing[J]. IEEE J Transl Eng He, 2018, 6, 1- 12. |
32 | 李亚智. 有限元法基础与程序设计[M]. 科学出版社, 2004. |
[1] | Lu HUO,Xiao-xin HU,Qin XIAO,Ya-jia GU,Xu CHU,Luan JIANG. Automatic Segmentation of Breast and Fibroglandular Tissues in DCE-MR Images Based on nnU-Net [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 367-380. |
[2] | Qin-yi SHI,Fang YAN,Yang YANG,Yue-fu CHEN,Xiao-lang LIN,Yuan-jun WANG. Image Segmentation of Tooth and Alveolar Bone with the Level Set Model [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 182-193. |
[3] | YUE Qing, WANG Yuan-jun. A Fiber Tracking Algorithm Based on Non-Local Constrained Spherical Deconvolution [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 422-433. |
[4] | LOU Yun-zhong, LIU Ying, JIANG Hua, ZHANG Hao-wei. A Deep Learning Algorithm for Classifying Meningioma and Auditory Neuroma in the Cerebellopontine Angle from Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 300-310. |
[5] | ZHAO Shang-yi, WANG Yuan-jun. Classification of Alzheimer's Disease Patients Based on Magnetic Resonance Images and an Improved UNet++ Model [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 321-331. |
[6] | CAI Wen-qin, WANG Yuan-jun. Advances in Construction of Human Brain Atlases from Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 241-253. |
[7] | GONG Jin-chang, WANG Yu, WANG Yuan-jun. A Method for Segmentation of Glioma on Multimodal Magnetic Resonance Images Based on Wavelet Fusion and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 131-143. |
[8] | JIANG Fan, WANG Yuan-jun. Construction of Human Brain Templates with Diffusion Tensor Imaging Data: A Review [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 520-530. |
[9] | YAN Zhi-yu, CHEN Zhi-wei. Implementation of Graphical Pulse Sequence Design Using Eclipse Graphical Modeling Framework [J]. Chinese Journal of Magnetic Resonance, 2017, 34(2): 175-182. |
[10] | ZHOU Xiao-long1,NIE Sheng-dong1*,WANG Yuan-jun1,ZHANG Ying-li2,YANG Pei-qiang2 . An Iterative Truncated Singular Value Decomposition (TSVD)-Based Inversion Methods for 2D NMR [J]. Chinese Journal of Magnetic Resonance, 2013, 30(4): 541-551. |
[11] | LI Xin-jun1,NIE Sheng-dong1*,WANG Yuan-jun1,YANG Pei-qiang2. An Improved Two- Dimensional Inversion Algorithm for Low-Field NMR Diffusion- Transverse Relaxation Correlation Data [J]. Chinese Journal of Magnetic Resonance, 2013, 30(3): 322-335. |
[12] | JIANG Fan, WANG Yuan-jun. A Review on Interpolation Methods for Diffusion Tensor Images [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 392-407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||