[1] Essayed W I, Zhang F, Unadkat P, et al. White matter tractography for neurosurgical planning:A topography-based review of the current state of the art[J]. Neuroimage:Clinical, 2017, 15:659-672. [2] Dell'Acqua F, Rizzo G, Scifo P, et al. A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging[J]. IEEE Trans Biomed Eng, 2007, 54(3):462-472. [3] JIANG F, WANG Y J. Construction of human brain templates with diffusion tensor imaging data:a review[J]. Chinese J Magn Reson, 2018, 35(4):520-530. 蒋帆, 王远军. 扩散张量成像的人脑模板构建[J]. 波谱学杂志, 2018, 35(4):520-530. [4] Assemlal H E, Tschumperlé D, Brun L, et al. Recent advances in diffusion MRI modeling:Angular and radial reconstruction[J]. Med Image Anal, 2011, 15(4):369-396. [5] Abhinav K, Yeh F C, Pathak S, et al. Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies:A review[J]. Biochim Biophys Acta, 2014, 1842(11):2286-2297. [6] Vettel J M, Cooper N, Garcia J O, et al. White matter tractography and diffusion-weighted imaging[M]//eLS. John Wiley & Sons, Ltd, 2017. [7] Toselli B, Franchin C, Scifo P, et al. Improved spherical deconvolution to solve fiber crossing in diffusion-weighted MR Imaging[C]. Annu Int Conf IEEE Eng Med Biol Soc, 2015, 2015:406-409. [8] Dell'Acqua F, Tournier J D. Modelling white matter with spherical deconvolution:How and why?[J]. NMR Biomed, 2018:e3945. [9] Canales-Rodríguez E J, LEGARRETA J H, PIZZOLATO M, et al. Sparse wars:A survey and comparative study of spherical deconvolution algorithms for diffusion MRI[J]. Neuroimage, 2019, 184:140-160. [10] Roine T, Jeurissen B, Perrone D, et al. Informed constrained spherical deconvolution (iCSD)[J]. Med Image Anal, 2015, 24(1):269-281. [11] Cacciola A, Milardi D, Calamuneri A, et al. Constrained spherical deconvolution tractography reveals Cerebello-Mammillary connections in humans[J]. Cerebellum, 2017, 16(2):483-495. [12] Tournier J D, Fernando C, Alan C. Robust determination of the fiber orientation distribution in diffusion MRI:Non-negativity constrained super-resolved spherical deconvolution[J]. Neuroimage, 2007, 35(4):1459-1472. [13] Hochstenbach M E, Reichel L. Fractional Tikhonov regularization for linear discrete ill-posed problems[J]. BIT, 2011, 51:197-215. [14] LIU Y N, PENG R Y, WANG L. Super-resolution image reconstruction based on adaptive fractional order total variation regularization[J]. Computer and Modernization, 2018, 9:56-61. 刘亚男, 彭仁勇, 王琳. 基于自适应分数阶全变分的超分辨率图像重建[J]. 计算机与现代化, 2018, 9:56-61. [15] CHEN Y, GUO B Y, MA X Y. Image processing based on regularization with fractional calculus[J]. Mathematica Numerica Sinica, 2017, 39(4):406. 陈云, 郭宝裕, 马祥园. 基于分数阶微积分正则化的图像处理[J]. 计算数学, 2017, 39(4):406. [16] Ye C Y, Prince J L. Dictionary-based fiber orientation estimation with improved spatial consistency[J]. Med Image Anal, 2018, 44:41-53. [17] Ye C Y, Zhuo J C, Gullapalli P R, et al. Estimation of fiber orientations using neighborhood information[M]//MICCAI Workshop. Computational diffusion MRI. Germany:Springer, 2015:87-96. [18] Jeurissen B, Descoteaux M, Mori S, et al. Diffusion MRI fiber tractography of the brain[J]. NMR Biomed, 2019, 32(4):e3785. [19] LU C, DONG J J, ZHONG K. Diffusion tensor imaging on TX mice brain at 9.4 T[J]. Chinese J Magn Reson, 2019, 36(4):510-516. 鲁晨, 董健健, 钟凯. 9.4 T下TX模型小鼠脑组织的扩散张量成像研究[J]. 波谱学杂志, 2019, 36(4):510-516. [20] Tournier J D, CALAMANTE F, GADIAN D G, et al. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution[J]. Neuroimage, 2004, 23(3):1176-1185. [21] Morigi S, Reichel L, Sgallari F. Fractional tikhonov regularization with a nonlinear penalty term[J]. J Comput Appl Math, 2017, 324:142-154. [22] 张军. 基于邻域字典基模型的脑纤维流线微分方程跟踪算法[D]. 杭州:浙江工业大学, 2017. [23] Schomburg H, Hohage T. Semi-local tractography strategies using neighborhood information[J]. Med Image Anal, 2017, 38:165-183. [24] Cherifi D, Boudjada M, Morsli A, et al. Combining improved euler and Runge-Kutta 4th order for tractography in diffusion-weighted MRI[J]. Biomed Signal Proces, 2018, 41:90-99. [25] Rathi Y, Neithammer M, Laun F, et al. Diffusion propagator estimation using radial basis functions[M]//MICCAI workshop. Computational Diffusion MRI and Brain Connectivity. Springer International Publishing, 2013:57-66. [26] Ariel R, Yeatman J D, Franco P, et al. Evaluating the accuracy of diffusion MRI models in white matter[J]. PLos One, 2015, 10(4):e0123272. [27] JIANG S, ZHANG P F, HAN T, et al. Tri-linear interpolation-based cerebral white matter fiber imaging[J]. Neural Regen Res, 2013, 8(23):2155-2164. |