Chinese Journal of Magnetic Resonance ›› 2021, Vol. 38 ›› Issue (4): 448-459.doi: 10.11938/cjmr20212929
Previous Articles Next Articles
Xiao-qing LIN,Shi-jia DU,Hao-lin ZHAN,Yu-qing HUANG,Zhong CHEN*()
Received:
2021-06-29
Online:
2021-12-05
Published:
2021-08-10
Contact:
Zhong CHEN
E-mail:chenz@xmu.edu.cn
CLC Number:
Xiao-qing LIN,Shi-jia DU,Hao-lin ZHAN,Yu-qing HUANG,Zhong CHEN. Two-Dimensional Homonuclear Orthogonal-Pattern Phase-Sensitive J-Resolved NMR Spectroscopy Based on Pure Shifts[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 448-459.
Fig.3
PSYCHE based orthogonal-pattern phase-sensitive J-resolved spectroscopy, RASA2DJ. (a) Pulse sequence diagram constituted of 1D PSYCHE and echo-train J acquisition module. A presaturation (Presat) module is adopted before the first nonselective π/2 pulse for water suppression. Vertical bars indicate nonselective π/2 and π pulses, two semicircle shaped pulses with diagonal arrows are frequency-swept chirp pulses with small flip angle β ≪ π/2, G1 and G2 are coherence selection gradients, G3 is a weak gradient matching with chirp pulses, t1 is the indirect evolution period and t2 is the direct acquisition period, SW1 is the spectral width corresponding to t1, and T is the time interval between two adjacent π pulses. (b) The procedure of phase-sensitive processing is illustrated using a singlet peak in a 2D phase-sensitive spectrum, including preserving an original spectrum and generating an F1'-reversed spectrum, summing these two spectra, and performing 1D phase correction along the F2' dimension (Excerpted from Ref. [44])
Fig.4
RASA2DJ experiments on small J coupling systems and complex samples. 1D NMR and RASA2DJ spectra of butyl methacrylate in DMSO-d6 are shown on the left. The total experimental time of RASA2DJ is 4 min. 1D NMR and RASA2DJ spectra of estradiol in DMSO-d6 (part region) are shown on the right. The total experimental time of RASA2DJ is 5 min (Reproduced from Ref. [44])
Fig.5
Pulse sequences for (a) single-band and (b) multi-band OPAM-2DJ experiments. The sequence is constituted of ZS and echo-train J acquisition modules. Green bars denote π/2 and π nonselective pulses, respectively. The red-shaped pulse represents monochromatic π pulse. The yellow-shaped pulses represent polychromatic π/2 and π pulses. Gz indicates the weak gradient for extracting spatial slice-selective signals; G1, G2, G3, G4 are used for coherence pathway selection. Φm, n is the appended Fourier encoding phase. Phase cycling: Φ1 (x, -x), Φ2 (x), Φ3 (x, x, y, y, -x, -x, -y, -y), Φrec (x, y, y, x). Φ4 is varied as (x, x, -x, -x) in the echo-train J acquisition module (Excerpted from Ref. [47])
Fig.7
High-resolution 2D J-edited spectroscopy applied in inhomogeneous magnetic fields. (a) HR-G-SERF sequence based on 3D acquisition. Phase cycling: Φ1 (x, -x), Φ2 (x), Φ3 (x, x, y, y, -x, -x, -y, -y), Φrec (x, -x, -x, x). (b) AH-G-SERF sequence based on accelerated 2D acquisition from the combination of ZS and G-SERF echo-train acquisition modules. Phase cycling: Φ1=Φ2=Φ3=Φrec=x, and Φ4 is set as a phase array of (x, x, x, x, -x, -x, -x, -x)N/2 in the J-edited echo-train acquisition module. Thin and fat green bars represent π/2 and π nonselective pulses. Blue and red shaped pulses indicate π selective pulses applied for inversing selected proton and spatial frequency encoding, respectively. Gz denotes the weak gradient for spatial frequency encoding. G1, G2, G3, and G4 are coherence-selection gradients (Excerpted from Ref.[53])
Fig.8
High-resolution HR-G-SERF experiments on the complex sample of estradiol under different magnetic field conditions. (a) Molecular conformation and observed coupling networks; (b~d) 1D NMR and HR-G-SERF spectra acquired in a well-shimmed field with selected protons 9 and 15α, respectively; (e~g) 1D NMR and HR-G-SERF spectra acquired in a inhomogeneous with selected protons 9 and 15α, respectively (Reproduced from Ref. [53])
1 |
DI CARO D , LIGUORI C , PIETROSANTO A , et al. Quality assessment of the inshell hazelnuts based on TD-NMR analysis[J]. IEEE Trans Instrum Meas, 2020, 69 (6): 3770- 3779.
doi: 10.1109/TIM.2019.2934662 |
2 |
EVANGELIDIS T , NERLI S , NOVACEK J , et al. Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra[J]. Nature Commun, 2018, 9 (1): 1- 13.
doi: 10.1038/s41467-017-02088-w |
3 |
TOYAMA Y , KANO H , MASE Y , et al. Dynamic regulation of GDP binding to g proteins revealed by magnetic field-dependent NMR relaxation analyses[J]. Nature Commun, 2017, 8 (1): 1- 15.
doi: 10.1038/s41467-016-0009-6 |
4 |
HUANG Y Q , ZHAN H L , YOU X Q , et al. A pure shift-based NMR method for transverse relaxation measurements on complex samples[J]. IEEE Trans Instrum Meas, 2020, 69 (1): 201- 211.
doi: 10.1109/TIM.2019.2894047 |
5 |
DU G F , LIN J , ZHANG J , et al. Study on shortening the dead time of surface nuclear magnetic resonance instrument using bipolar phase pulses[J]. IEEE Trans Instrum Meas, 2020, 69 (4): 1268- 1274.
doi: 10.1109/TIM.2019.2911755 |
6 |
FU R Q , MIAO Y M , QIN H J , et al. Probing hydronium ion histidine NH exchange rate constants in the m2 channel via indirect observation of dipolar-dephased 15N signals in magic-angle-spinning NMR[J]. J Amer Chem Soc, 2016, 138 (49): 15801- 15804.
doi: 10.1021/jacs.6b08376 |
7 | FRYDMAN L , SCHERF T , LUPULESCU A . The acquisition of multidimensional NMR spectra within a single scan[J]. Proc Nat Acad Sci USA, 2020, 99 (25): 15858- 15862. |
8 | CHEN X L , LV W , SU Q C . Conversion of lignocellulose studied by nuclear magnetic resonance[J]. Chinese J Magn Reson, 2021, 38 (2): 277- 290. |
陈晓丽, 吕微, 苏秋成, 等. 核磁共振技术在生物质转化中的应用[J]. 波谱学杂志, 2021, 38 (2): 277- 290. | |
9 |
ZANGGER K . Pure shift NMR[J]. Prog Nucl Magn Reson Spectrosc, 2015, 86-87, 1- 20.
doi: 10.1016/j.pnmrs.2015.02.002 |
10 | ZHOU Q J , XIANG J F , TANG Y L , et al. Pure shift proton NMR spectroscopy and its application[J]. Chinese J Magn Reson, 2016, 33 (3): 502- 513. |
周秋菊, 向俊峰, 唐亚林, 等. 纯位移核磁共振氢谱及其应用[J]. 波谱学杂志, 2016, 33 (3): 502- 513. | |
11 | LIN X Q , LI H , ZHAN H L , et al. High-resolution pure shift NMR spectroscopy and its applications[J]. Chinese J Magn Reson, 2019, 36 (4): 425- 436. |
林晓晴, 李弘, 詹昊霖, 等. 高分辨率核磁共振纯化学位移谱新方法及其应用[J]. 波谱学杂志, 2019, 36 (4): 425- 436. | |
12 |
HUNG I , GAN Z H . High-resolution NMR of S=3/2 quadrupole nuclei by detection of double-quantum satellite transitions via protons[J]. J Phys Chem Lett, 2020, 11 (12): 4734- 4740.
doi: 10.1021/acs.jpclett.0c01236 |
13 |
BIFULCO G , DAMBRUOSO P , GOMEZ-PALOMA L , et al. Determination of relative configuration in organic compounds by NMR spectroscopy and computational methods[J]. Chem Rev, 2007, 107 (9): 3744- 3779.
doi: 10.1021/cr030733c |
14 |
THOMAS W A . Unravelling molecular structure and conformation-the modern role of coupling constants[J]. Prog Nucl Magn Reson Spectrosc, 1997, 30, 183- 207.
doi: 10.1016/S0079-6565(96)01033-3 |
15 |
REIF B , HENNIG M , GRIESINGER C . Direct measurement of angles between bond vectors in high-resolution NMR[J]. Science, 1997, 276 (5316): 1230- 1233.
doi: 10.1126/science.276.5316.1230 |
16 | LI Y J , YANG H J , LIU J H , et al. Assignments of NMR spectral data of a novel carbazole-triazinoindole based N-acylhydrazone derivative[J]. Chinese J Magn Reson, 2020, 37 (4): 496- 504. |
李英俊, 杨鸿境, 刘季红, 等. 基于咔唑-三嗪并吲哚的N-酰腙衍生物的NMR数据归属[J]. 波谱学杂志, 2020, 37 (4): 496- 504. | |
17 |
AUE W P , KARHAN J , ERNST R R . Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy[J]. J Chem Phys, 1976, 64, 4226- 4227.
doi: 10.1063/1.431994 |
18 |
KIKUCHI J , TSUBOI Y , KOMATSU K , et al. Spin couple: development of a web tool for analyzing metabolite mixtures via two-dimensional J-resolved NMR database[J]. Anal Chem, 2016, 88 (1): 659- 665.
doi: 10.1021/acs.analchem.5b02311 |
19 |
LUPULESCU A , AHARON H , FRYDMAN L . Two-dimensional RF pulses: A new approach to selectively exciting J-coupled spins in nuclear magnetic resonance[J]. J Chem Phys, 2013, 139 (14): 144204.
doi: 10.1063/1.4823772 |
20 |
ESPINDOLA A P D M , CROUCH R , DEBERGH J R , et al. Deconvolution of complex NMR spectra in small molecules by multi frequency homonuclear decoupling (MDEC)[J]. J Amer Chem Soc, 2009, 131 (44): 15994- 15995.
doi: 10.1021/ja907110e |
21 |
YILMAZ A , NYBERG N T , JAROSZEWSKI J W . Metabolic profiling based on two-dimensional J-resolved 1H NMR data and parallel factor analysis[J]. Anal Chem, 2011, 83 (21): 8278- 8285.
doi: 10.1021/ac202089g |
22 |
LUDWIG C , VIANT M R . Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox[J]. Phytochem Anal, 2010, 21 (1): 22- 32.
doi: 10.1002/pca.1186 |
23 |
RACHINENI K , KAKITA V M R , DAYAKA S , et al. Precise determination of enantiomeric excess by a sensitivity enhanced two-dimensional band-selective pure-shift NMR[J]. Anal Chem, 2015, 87 (14): 7258- 7266.
doi: 10.1021/acs.analchem.5b01288 |
24 |
KIRALY P , FOROOZANDEH M , NILSSON M , et al. Anatomising proton NMR spectra with pure shift 2D J-spectroscopy: A cautionary tale[J]. Chem Phys Lett, 2017, 683, 398- 403.
doi: 10.1016/j.cplett.2017.01.031 |
25 | BAX A , FREEMAN R , MORRIS G A . A simple method for suppressing dispersion-mode contributions in NMR spectra: The "pseudo echo"[J]. J Magn Reson, 1981, 43 (2): 333- 338. |
26 |
ARMSTRONG G S , CHEN J H , CANO K E , et al. Regularized resolvent transform for direct calculation of 45° projections of 2D J spectra[J]. J Magn Reson, 2003, 164 (1): 136- 144.
doi: 10.1016/S1090-7807(03)00129-0 |
27 |
CHEN J H , SHAKA A J , MANDELSHTAM V A . RRT: The regularized resolvent transform for high-resolution spectral estimation[J]. J Magn Reson, 2000, 147 (1): 129- 137.
doi: 10.1006/jmre.2000.2176 |
28 |
MANDELSHTAM V A , TAYLOR H S , SHAKA A J . Application of the filter diagonalization method to one- and two-dimensional NMR spectra[J]. J Magn Reson, 1998, 133 (2): 304- 312.
doi: 10.1006/jmre.1998.1476 |
29 |
HU H T , DE ANGELIS A A , MANDELSHTAM V A , et al. The multidimensional filter diagonalization method - Ⅱ. Application to 2D projections of 2D, 3D, and 4D NMR experiments[J]. J Magn Reson, 2000, 144 (2): 357- 366.
doi: 10.1006/jmre.2000.2066 |
30 | KEELER J , NEUHAUS D . Comparison and evaluation of methods for two-dimensional NMR spectra with absorption-mode lineshapes[J]. J Magn Reson, 1985, 63 (3): 454- 472. |
31 |
ZANGGER K , STERK H . Homonuclear broadband-decoupled NMR spectra[J]. J Magn Reson, 1997, 124 (2): 486- 489.
doi: 10.1006/jmre.1996.1063 |
32 |
PELL A J , KEELER J . Two-dimensional J-spectra with absorption-mode lineshapes[J]. J Magn Reson, 2007, 189 (2): 293- 299.
doi: 10.1016/j.jmr.2007.09.002 |
33 |
MISHRA S K , LOKESH N , SURYAPRAKASH N . Clean G-SERF an NMR experiment for the complete eradication of axial peaks and undesired couplings from the complex spectrum[J]. RSC Adv, 2017, 7 (2): 735- 741.
doi: 10.1039/C6RA25617A |
34 |
LOKESH N , CHAUDHARI S R , SURYAPRAKASH N . Quick re-introduction of selective scalar interactions in a pure-shift NMR spectrum[J]. Chem Commun, 2014, 50 (98): 15597- 15600.
doi: 10.1039/C4CC06772J |
35 |
FOROOZANDEH M , ADAMS R W , MEHARRY N J , et al. Ultrahigh-resolution NMR spectroscopy[J]. Angew Chem Int Ed, 2014, 53 (27): 6990- 6992.
doi: 10.1002/anie.201404111 |
36 |
FOROOZANDEH M , ADAMS R W , KIRALY P , et al. Measuring couplings in crowded NMR spectra: pure shift NMR with multiplet analysis[J]. Chem Commun, 2015, 51 (84): 15410- 15413.
doi: 10.1039/C5CC06293D |
37 |
SINNAEVE D , FOROOZANDEH M , NILSSON M , et al. A general method for extracting individual coupling constants from crowded 1H NMR spectra[J]. Angew Chem Int Ed, 2016, 55 (3): 1090- 1093.
doi: 10.1002/anie.201508691 |
38 |
SINNAEVE D . Clean pure shift 2D J-resolved spectroscopy[J]. Magn Reson Chem, 2018, 56 (10): 947- 953.
doi: 10.1002/mrc.4671 |
39 |
NAGAYAMA K . Spin decoupling in two-dimensional J-resolved NMR spectroscopy[J]. J Chem Phys, 1979, 71, 4404- 4415.
doi: 10.1063/1.438245 |
40 |
THRIPPLETON M J , EDDEN R A E , KEELER J . Suppression of strong coupling artefacts in J-spectra[J]. J Magn Reson, 2005, 174 (1): 97- 109.
doi: 10.1016/j.jmr.2005.01.012 |
41 |
GAL M , MISHKOVSKY M , FRYDMAN L . Real-time monitoring of chemical transformations by ultrafast 2D NMR spectroscopy[J]. J Amer Chem Soc, 2006, 128 (3): 951- 956.
doi: 10.1021/ja0564158 |
42 |
VIANT M R . Improved methods for the acquisition and interpretation of NMR metabolomic data[J]. Biochem Biophys Res Commun, 2003, 310 (3): 943- 948.
doi: 10.1016/j.bbrc.2003.09.092 |
43 |
TAL A , FRYDMAN L . Single-scan multidimensional magnetic resonance[J]. Prog Nucl Magn Reson Spectrosc, 2010, 57 (3): 241- 292.
doi: 10.1016/j.pnmrs.2010.04.001 |
44 |
HUANG Y Q , YANG Y , CAI S H . General two-dimensional absorption-mode J‑resolved NMR spectroscopy[J]. Anal Chem, 2017, 89 (23): 12646- 12651.
doi: 10.1021/acs.analchem.7b02740 |
45 |
PELUPESSY P , RENNELLA E , BODENHAUSEN G . High-resolution NMR in magnetic fields with unknown spatiotemporal variations[J]. Science, 2009, 324 (5935): 1693- 1697.
doi: 10.1126/science.1175102 |
46 |
FUGARIU I , BERMEL W , LANE D , et al. In-phase ultra high-resolution in vivo NMR[J]. Angew Chem Int Ed, 2017, 56 (22): 6324- 6328.
doi: 10.1002/anie.201701097 |
47 | ZHAN H L , HUANG Y Q , CHEN Z . An orthogonal-pattern absorption-mode 2D J-resolved NMR spectroscopy for analyses on complex samples[J]. IEEE Trans Instrum Meas, 2021, 70, 6004509. |
48 |
FACKE T , BERGER S . SERF, a new method for H, H spin-coupling measurement in organic chemistry[J]. J Magn Reson Ser A, 1995, 113 (1): 114- 116.
doi: 10.1006/jmra.1995.1063 |
49 |
GIRAUD N , BEGUIN L , COURTIEU J , et al. Nuclear magnetic resonance using a spatial frequency encoding: application to J-edited spectroscopy along the sample[J]. Angew Chem Int Ed, 2010, 49 (20): 3481- 3484.
doi: 10.1002/anie.200907103 |
50 |
MISHRA S K , LOKESH N , SURYAPRAKASH N . Clean G-SERF an NMR experiment for the complete eradication of axial peaks and undesired couplings from the complex spectrum[J]. RSC Adv, 2017, 7 (2): 735- 741.
doi: 10.1039/C6RA25617A |
51 |
LIN L J , WEI Z L , LIN Y Q , et al. Measuring JHH values with a selective constant-time 2D NMR protocol[J]. J Magn Reson, 2016, 272, 20- 24.
doi: 10.1016/j.jmr.2016.08.019 |
52 | CHEN J Y , ZENG Q , LIN Y Q , et al. Simultaneous multi-slice selective constant-time J-resolved spectroscopy for measuring J values[J]. Chinese J Magn Reson, 2019, 36 (4): 456- 462. |
陈金永, 曾庆, 林雁勤, 等. 用于测量J偶合常数的同时多层选择性恒时J分解谱的方法[J]. 波谱学杂志, 2019, 36 (4): 456- 462. | |
53 |
ZHAN H L , HUANG Y Q , WANG X C , et al. Highly efficient determination of complex NMR multiplet structures in inhomogeneous magnetic fields[J]. Anal Chem, 2021, 93, 2419- 2423.
doi: 10.1021/acs.analchem.0c04365 |
54 |
PELUPESSY P , RENNELLA E , BODENHAUSEN G . High-resolution NMR in magnetic fields with unknown spatiotemporal variations[J]. Science, 2009, 324 (5935): 1693- 1697.
doi: 10.1126/science.1175102 |
55 |
GAN Z H , HUNG I , WANG X L , et al. NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet[J]. J Magn Reson, 2017, 284, 125- 136.
doi: 10.1016/j.jmr.2017.08.007 |
56 |
LAMBERT J , HERGENRODER R , SUTER D , et al. Probing liquid-liquid interfaces with spatially resolved NMR spectroscopy[J]. Angew Chem Int Ed, 2009, 48 (34): 6343- 6345.
doi: 10.1002/anie.200901389 |
[1] | Qian XU,Lang CHEN,Xiang-ying HU,Cong-gang LI,Yi-xiang LIU,Ling JIANG. The Effect of T69E-mimicked Phosphorylation on the Interaction Between Bcl-2 and Nur77 [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 87-95. |
[2] | Yao XIAO,Chang-jiu XIA,Xian-feng YI,Feng-qing LIU,Shang-bin LIU,An-min ZHENG. Progress in the Studies on Sn-Zeolites by Solid-State Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 571-584. |
[3] | Xiao-dong HU,Wen-xian LAN,Chun-xi WANG,Chun-yang CAO. Research Advance and NMR Studies of Anti-Cancer Small Molecules Targeting c-MYC G4-DNA [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 503-513. |
[4] | Zi-hao WANG,He XU,Tao WANG,Shan-zhong YANG,Yun-sheng DING,Hai-bing WEI. NMR Spectroscopic Studies on (exo, endo) C-2 Monosubstituted Norbornene Derivatives [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 323-335. |
[5] | Chong-wu WANG,Xi HUANG,Lei SHI,Shi-zhen CHEN,Xin ZHOU. Cathepsin B Triggered Hyperpolarization 129Xe MRI Probe for Ultra-Sensitive Lung Cancer Cells Detection [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 336-344. |
[6] | Jia-min WU,Yu-cheng HE,Zheng XU,Yan-he ZHU,Wen-zheng JIANG. A Wide-Band Matching Method for Radio Frequency Coils Used in Soil Moisture Measurement [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 414-423. |
[7] | Xin-yi ZHAO,Dong HAN,Hong-jun LUO,Wen-bin SHEN,Gong-jun YANG. Spectroscopic Studies of Delafloxacin Meglumine [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 268-276. |
[8] | Xiao-wen CHEN,Bi-ling HUANG,Shao-hua HUANG,Yu-fen ZHAO. An NMR Study on the clpC Operon Binding Region of Transcription Factor CtsR from Bacillus subtilis [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 155-163. |
[9] | Yi LI,Jia-xiang XIN,Jia-chen WANG,Da-xiu WEI,Ye-feng YAO. Preparation Efficiency of Nuclear Spin Singlet State: A Comparison Among Three Pulse Sequences [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 227-238. |
[10] | Jin-bo YU,Cai ZHANG,Ze-ting ZHANG,Guo-hua XU,Cong-gang LI. Interactions Between α-synuclein and Intact Mitochondria Studied by NMR [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 164-172. |
[11] | Wei ZHANG,Yi-ming WU,Wei-ping CUI,Liang XIAO. Correction for the Nuclear Magnetic Resonance Porosity in Heavy Oil-bearing Reservoirs [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 204-214. |
[12] | Kun MENG,Sheng-jian WANG,Zong-an XUE,Rui-qing HOU,Liang XIAO. Quantitative Evaluation of Shale Pore Structure Using Nuclear Magnetic Resonance Data [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 215-226. |
[13] | Zhi-wu ZHANG,Ju YANG,Ze-feng NIE,Shang-xiang YE,Xu DONG,Chun TANG. Development of a Temperature Senor Based on 19F-labeled Phosphorylated Ubiquitin [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 173-181. |
[14] | LIAO Huai-yu, HAN Hong-yuan, CHEN Fei, ZHANG Hai-yan, YANG Jing, ZHAO Tian-zeng. An NMR Study on Two New β-Dihydroagrofuran Compounds in Celastrus angulatus Maxim [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 101-109. |
[15] | WANG Rui-di, XU Bei-bei, SONG Yan-hong, WANG Xue-lu, YAO Ye-feng. Methanol-Water Interaction in Photocatalytic Methanol Reforming ─ An Operando NMR Study [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 43-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||