[1] PETERS J R T. All about albumin:biochemistry, genetics, and medical applications[M]. America:Academic press, 1995.
[2] DUGAICZYK A, LAW S W, DENNISON O E. Nucleotide sequence and the encoded amino acids of human serum albumin mRNA[J]. P Nat Acad Sci USA, 1982, 79(1):71-75.
[3] SUGIO1 S, KASHIMA A, MOCHIZUKI S, et al. Crystal structure of human serum albumin at 2.5Å resolution[J]. Protein Eng, 1999, 12(6):439-446.
[4] HE X M, CARTER D C. Atomic structure and chemistry of human serum albumin[J]. Nature, 1992, 358(6383):209-215.
[5] STEWART P A. Modern quantitative acid-base chemistry[J]. Can J Physiol Pharm, 1983, 61(12):1444-1461.
[6] LI X, LAN W X, ZHU H, et al. Effect of pH on human blood serum studied by 1H NMR spectroscopy[J]. Chinese J Magn Reson, 2008, 25(4):494-503. 李雪, 蓝文贤, 朱航, 等. pH对血清影响的1H NMR研究[J]. 波谱学杂志, 2008, 25(4):494-503.
[7] COHN E J, STRONG L E, HUGHES W, et al. Preparation and properties of serum and plasma proteins. IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids1a, b, c, d[J]. J Am Chem Soc, 1946, 68(3):459-475.
[8] STEINHARDT J, KRIJN J, LEIDY J G. Differences between bovine and human serum albumins. Binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence effects[J]. Biochemistry, 1971, 10(22):4005-4015.
[9] BAL W, SOKOLOWSKA M, KUROWSKA E, et al. Binding of transition metal ions to albumin:sites, affinities and rates[J]. Biochim Biophys Acta, 2013, 1830(12):5444-5455.
[10] FERRARO G, MASSAI L, MESSORI L, et al. Cisplatin binding to human serum albumin:a structural study[J]. Chem Commun, 2015, 51(46):9436-9439.
[11] TURK B E, WONG T Y, SCHWARZENBACHER R, et al. The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor[J]. Nat Struct Mol Biol, 2004, 11(11):60-66.
[12] TURK B E, WONG T Y, SCHWARZENBACHER R, et al. The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor[J]. Nat Struct Mol Biol, 2004, 11(1):60-66.
[13] PETERSSON K, H KANSSON M, NILSSON H, et al. Crystal structure of a superantigen bound to MHC class Ⅱ displays zinc and peptide dependence[J]. EMBO J, 2001, 20(13):3306-3312.
[14] CAROLI S, ALIMONTI A, CONI E, et al. The assessment of reference values for elements in human biological tissues and fluids:a systematic review[J]. Crit Rev Anal Chem, 1994, 24(5,6):363-398.
[15] COUSINS R J, DUNN M A, LEINART A S, et al. Coordinate regulation of zinc metabolism and metallothionein gene expression in rats[J]. Am J Physiol Endoc M, 1986, 251(6):688-694.
[16] GIROUX E L, HENKIN R I. Macromolecular ligands of exchangeable copper, zinc and cadmium in human serum[J]. Bioinorg Chem, 1973, 2(2):125-133.
[17] PATTISON S E, COUSINS R J. Kinetics of zinc uptake and exchange by primary cultures of rat hepatocytes[J]. Am J Physiol Endoc M, 1986, 250(6):677-685.
[18] ROWE D J, BOBILYA D J. Albumin facilitates zinc acquisition by endothelial cells[J]. P Soc Exp Biol Med, 2000, 224(3):178-186.
[19] GHUMAN J, ZUNSZAIN P A, PETITPAS I, et al. Structural basis of the drug-binding specificity of human serum albumin[J]. J Mol Biol, 2005, 353(1):38-52.
[20] CARTER D C, HE X M, MUNSON S H, et al. Three-dimensional structure of human serum albumin[J]. Science, 1989, 244(4909):1195-1198.
[21] LIU T, LIU M L, JIANG L. Divalent metal ion binding to the response regulator YycFN studied by NMR spectroscopy[J]. Chinese J Magn Reson, 2016, 33(1):77-88. 刘婷, 刘买利, 姜凌. 二价金属离子与YycFN相互作用的NMR研究[J]. 波谱学杂志, 2016, 33(1):77-88.
[22] WAGNER G. An account of NMR in structural biology[J]. Nat Struct Biol, 1997, 4:841-844.
[23] CISTOLA D P, SMALL D, HAMILTON J. Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. I. The filling of individual fatty acid binding sites[J]. J Biol Chem, 1987, 262(23):10971-10979.
[24] CISTOLA D, SMALL D, HAMILTON J. Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. Ⅱ. Electrostatic interactions in individual fatty acid binding sites[J]. J Biol Chem, 1987, 262(23):10980-10985.
[25] JIANG X W, SUN P, XIAO N, et al. Sensitivity enhancement in 1H-13C HSQC experiments on aromatic groups in proteins[J]. Chinese J Magn Reson, 2014, 31(1):61-70. 蒋先旺, 孙鹏, 肖楠, 等. 蛋白质芳香基团的1H-13C HSQC信号增强研究[J]. 波谱学杂志, 2014, 31(1):61-70.
[26] HENZLER-WILDMAN K, KERN D. Dynamic personalities of proteins[J]. Nature, 2007, 450(7172):964-972.
[27] SNYDER D A, CHEN Y, DENISSOVA N G, et al. Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination[J]. J Am Chem Soc, 2005, 127(47):16505-16511.
[28] LIN D H, HONG J. Mapping protein-ligand interaction by NMR techniques[J]. Chinese J Magn Reson. 2005, 22(3):321-341. 林东海, 洪晶. 用NMR技术研究蛋白质-配体相互作用[J]. 波谱学杂志, 2005, 22(3):321-341.
[29] BLINDAUER C A, HARVEY I, BUNYAN K E, et al. Structure, properties, and engineering of the major zinc binding site on human albumin[J]. J Biol Chem, 2009, 284(34):23116-23124.
[30] DALVIT C, FOGLIATTO G, STEWART A, et al. WaterLOGSY as a method for primary NMR screening:practical aspects and range of applicability[J]. J Biomol NMR, 2001, 21(4):349-359.
[31] SUN P, JIANG X W, JIANG B, et al. Biomolecular ligands screening using radiation damping difference WaterLOGSY spectroscopy[J]. J Biomol NMR, 2013, 56(3):285-290.
[32] GRZESIEK S, BAX A. Measurement of amide proton exchange rates and NOEs with water in 13C/15N-enriched calcineurin B[J]. J Biomol NMR, 1993, 3(6):627-638.
[33] LIU M L, MAO X A, YE C H, et al. Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy[J]. J Magn Reson, 1998, 132(1):125-129.
[34] WANG J, ZHANG X, SUN P, et al. The impact of pulse duration on composite WATERGATE pulse[J]. J Magn Reson, 2010, 206(2):205-209.
[35] STEWART A J, BLINDAUER C A, BEREZENKO S, et al. Interdomain zinc site on human albumin[J]. P Nat Acad Sci USA, 2003, 100(7):3701-3706. |