Chinese Journal of Magnetic Resonance ›› 2017, Vol. 34 ›› Issue (1): 115-129.doi: 10.11938/cjmr20170114
LI Dong-bei, XU Shuai, YU Zhi-wu
Received:
2016-02-02
Revised:
2017-01-05
Online:
2017-03-05
Published:
2017-03-05
CLC Number:
LI Dong-bei, XU Shuai, YU Zhi-wu. Application of Solid-State NMR to Bone and Bone Biomaterials[J]. Chinese Journal of Magnetic Resonance, 2017, 34(1): 115-129.
[1] JOHNELL O, KANIS J A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures[J]. Osteoporosis Int, 2006, 17(12):1726-1733. [2] GULLBERG B, JOHNELL O, KANIS J A. World-wide projections for hip fracture[J]. Osteoporosis Int, 1997, 7(5):407-413. [3] MELTON L J. Hip fractures:A worldwide problem today and tomorrow[J]. Bone, 1993, 14(S):1-8. [4] MELTON L J, KAN S H, FRYE M A, et al. Epidemiology of vertebral fractures in women[J]. Am J Epidemiol, 1989, 129(5):1000-1011. [5] BOCK R M, MCENTIRE B J, BAL B S, et al. Surface modulation of silicon nitride ceramics for orthopaedic applications[J]. Acta Biomater, 2015, 26:318-330. [6] WU C, ZHANG Y, ZHU Y, et al. Structure-property relationships of silk-modified mesoporous bioglass scaffolds[J]. Biomaterials, 2010, 31(13):3429-3438. [7] VANI R, GIRIJA E K, ELAYARAJA K, et al. Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate[J]. J Mater Sci Mater Med, 2009, 20(S1):43-48. [8] ZHANG Y, VENUGOPAL J R, EL-TURKI A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering[J]. Biomaterials, 2008, 29(32):4314-4322. [9] HUTCHENS S A, BENSON R S, EVANS B R, et al. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel[J]. Biomaterials, 2006, 27(26):4661-4670. [10] HU Q L, LI B Q, WANG M, et al. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization:A potential material as internal fixation of bone fracture[J]. Biomaterials, 2004, 25(5):779-785. [11] DUPONT L, GUILLON E, BOUANDA J, et al. EXAFS and XANES studies of retention of copper and lead by a lignocellulosic biomaterial[J]. Environ Sci Technol, 2002, 36(23):5062-5066. [12] CHEN J, YU Z, ZHU P, et al. Effects of fluorine on the structure of fluorohydroxyapatite:A study by XRD, solid-state NMR and Raman spectroscopy[J]. J Mater Chem B, 2015, 3(1):34-38. [13] LAURENCIN D, ALMORA-BARRIOS N, DE LEEUW N H, et al. Magnesium incorporation into hydroxyapatite[J]. Biomaterials, 2011, 32(7):1826-1837. [14] CHEN P H, TSENG Y H, MOU Y, et al. Adsorption of a statherin peptide fragment on the surface of nanocrystallites of hydroxyapatite[J]. J Am Chem Soc, 2008, 130(9):2862-2868. [15] XU J, ZHU P, GAN Z, et al. Natural-abundance 43Ca solid-state NMR spectroscopy of bone[J]. J Am Chem Soc, 2010, 132(33):11504-11509. [16] CHO G Y, WU Y T, ACKERMAN J L. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy[J]. Science, 2003, 300(5622):1123-1127. [17] WANG Y, VON EUW S, FERNANDES F M, et al. Water-mediated structuring of bone apatite[J]. Nat Mater, 2013, 12(12):1144-1153. [18] HU Y Y, RAWAL A, SCHMIDT-ROHR K. Strongly bound citrate stabilizes the apatite nanocrystals in bone[J]. Proc Natl Acad Sci USA, 2010, 107(52):22425-22429. [19] BONHOMME C, GERVAIS C, FOLLIET N, et al. 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials:Antiosteoporotic pharmaceuticals and bioactive glasses[J]. J Am Chem Soc, 2012, 134(30):12611-12628. [20] WATTS S J, HILL R G, O'DONNELL M D, et al. Influence of magnesia on the structure and properties of bioactive glasses[J]. J Non-Cryst Solids, 2010, 356(9, 10):517-524. [21] LAURENCIN D, WONG A, CHRZANOWSKI W, et al. Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy[J]. Phys Chem Chem Phys, 2010, 12(5):1081-1091. [22] BRAUN M, HARTMANN P, JANA C. 19F and 31P NMR spectroscopy of calcium apatites[J]. J Mater Sci Mater Med, 1995, 6(3):150-154. [23] KOLMAS J, KURAS M, OLEDZKA E, et al. A solid-state NMR study of selenium substitution into nanocrystalline hydroxyapatite[J]. Int J Mol Sci, 2015, 16(5):11452-11464. [24] KOLMAS J, JAKLEWICZ A, ZIMA A, et al. Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite:The effect on physicochemical properties[J]. J Mol Struct, 2011, 987(1-3):40-50. [25] MARCHAT D, ZYMELKA M, COELHO C, et al. Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route[J]. Acta Biomater, 2013, 9(6):6992-7004. [26] GRÖGER C, LUTZ K, BRUNNER E. NMR studies of biomineralisation[J]. Prog Nucl Magn Reson Spectrosc, 2009, 54(1):54-68. [27] KOLODZIEJSKI W. New Techniques in solid-state NMR[M]. Berlin:Springer, 2005. [28] GOOBES G, STAYTON P S, DROBNY G P. Solid state NMR studies of molecular recognition at protein-mineral interfaces[J]. Prog Nucl Magn Reson Spectrosc, 2007, 50(2, 3):71-85. [29] BRADLEY J V, BRIDGLAND L N, COLYER D E, et al. NMR of biopolymer-apatite composites:Developing a model of the molecular structure of the mineral-matrix interface in calcium phosphate biomaterials[J]. Chem Mater, 2010, 22(22):6109-6116. [30] BARHEINE S, HAYAKAWA S, OSAKA A, et al. Surface, interface, and bulk structure of borate containing apatitic biomaterials[J]. Chem Mater, 2009, 21(14):3102-3109. [31] Cheng R H, Wu Z, Huang P C, et al. Sensitivity enhancement of multiple quantum and satellite transition magic angle spinning spectra by optimizing the initial state[J]. Chinese J Magn Reson, 2015, 32(2):363-372. 郑人豪, 吴振, 黄柏琦, 等. 优化初始脉冲增强多量子跃迁及卫星跃迁魔角旋转谱灵敏度[J]. 波谱学杂志, 2015, 32(2):363-372. [32] Wang F F, Chen T H, Sun P C. Heterogeneous structure and miscibility of phenylboronic acid-rich chitosan nanoparticles as revealed by advanced solid-state NMR[J]. Chinese J Magn Reson, 2015, 32(2):354-362. 王粉粉, 陈铁红, 孙平川. 先进固体核磁共振揭示苯硼酸-壳聚糖纳米粒子非均匀结构和相容性[J]. 波谱学杂志, 2015, 32(2):354-362. [33] LEGEROS R Z, LIN S, ROHANIZADEH R, et al. Biphasic calcium phosphate bioceramics:Preparation, properties and applications[J]. J Mater Sci Mater Med, 2003, 14(3):201-209. [34] GAUTHIER O, BOULER J M, AGUADO E, et al. Macroporous biphasic calcium phosphate ceramics:Influence of macropore diameter and macroporosity percentage on bone ingrowth[J]. Biomaterials, 1998, 19(1-3):133-139. [35] KLEIN C, DEGROOT K, DRIESSEN A A, et al. Interaction of biodegradable beta-whitlockite ceramics with bone tissue:An in vivo study[J]. Biomaterials, 1985, 6(3):189-192. [36] GINTY F, FLYNN A, CASHMAN K D. The effect of dietary sodium intake on biochemical markers of bone metabolism in young women[J]. Brit J Nutr, 1998, 79(4):343-350. [37] ITOH R, SUYAMA Y. Sodium excretion in relation to calcium and hydroxyproline excretion in a healthy Japanese population[J]. Am J Clin Nutr, 1996, 63(5):735-740. [38] RUDE R K, GRUBER H E. Magnesium deficiency and osteoporosis:Animal and human observations[J]. J Nutr Biochem, 2004, 15(12):710-716. [39] FEATHERSTONE J D B. Prevention and reversal of dental caries:Role of low level fluoride[J]. Community Dent Oral, 1999, 27(1):31-40. [40] AIZENBERG J, BLACK A J, WHITESIDES G M. Control of crystal nucleation by patterned self-assembled monolayers[J]. Nature, 1999, 398(6727):495-498. [41] WEINER S, ADDADI L. Design strategies in mineralized biological materials[J]. J Mater Chem, 1997, 7(5):689-702. [42] STUPP S I, BRAUN P V. Molecular manipulation of microstructures:Biomaterials, ceramics, and semiconductors[J]. Science, 1997, 277(5330):1242-1248. [43] CAO M, WANG Y, GUO C, et al. Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions[J]. Langmuir, 2004, 20(11):4784-4786. [44] DONNERS J, NOLTE R J, SOMMERDIJK N. Dendrimer-based hydroxyapatite composites with remarkable materials properties[J]. Adv Mater, 2003, 15(4):313-316. [45] SARDA S, HEUGHEBAERT M, LEBUGLE A. Influence of the type of surfactant on the formation of calcium phosphate in organized molecular systems[J]. Chem Mater, 1999, 11(10):2722-2727. [46] HOANG Q Q, SICHERI F, HOWARD A J, et al. Bone recognition mechanism of porcine osteocalcin from crystal structure[J]. Nature, 2003, 425(6961):977-980. [47] REES S G, SHELLIS R P, EMBERY G. Inhibition of hydroxyapatite crystal growth by bone proteoglycans and proteoglycan components[J]. Biochem Bioph Res Co, 2002, 292(3):727-733. [48] BREKKEN R A, SAGE E H. SPARC, a matricellular protein:At the crossroads of cell-matrix communication[J]. Matrix Biol, 2001, 19(8):816-827. [49] KNOTT L, BAILEY A J. Collagen cross-links in mineralizing tissues:A review of their chemistry, function, and clinical relevance[J]. Bone, 1998, 22(3):181-187. [50] PROCKOP D J, KIVIRIKKO K I. Collagens:Molecular biology, diseases, and potentials for therapy[J]. Annu Rev Biochem, 1995, 64:403-434. [51] LANDI E, TAMPIERI A, MATTIOLI-BELMONTE M, et al. Biomimetic Mg- and Mg, CO3-substituted hydroxyapatites:Synthesis characterization and in vitro behaviour[J]. J Eur Ceram Soc, 2006, 26(13):2593-2601. [52] HEANEY R P. Role of dietary sodium in osteoporosis[J]. J Am Coll Nutr, 2006, 25(S3):271-276. [53] WISE E R, MALTSEV S, DAVIES M E, et al. The organic-mineral interface in bone is predominantly polysaccharide[J]. Chem Mater, 2007, 19(21):5055-5057. [54] HE G, DAHL T, VEIS A, et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1[J]. Nat Mater, 2003, 2(8):552-558. [55] LANDIS W J, SONG M J, LEITH A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction[J]. J Struct Biol, 1993, 110(1):39-54. [56] WEINER S, WAGNER H D. The material bone:Structure-mechanical function relations[J]. Annu Rev Mater Sci, 1998, 28:271-298. [57] WEINER S, TRAUB W. Bone structure:From angstroms to microns[J]. Faseb J, 1992, 6(3):879-885. [58] JAEGER C, GROOM N S, BOWE E A, et al. Investigation of the nature of the protein-mineral interface in bone by solid-state NMR[J]. Chem Mater, 2005, 17(12):3059-3061. [59] BUEHLER J, CHAPPUIS P, SAFFAR J, et al. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis)[J]. Bone, 2001, 29(2):176-179. [60] GRYNPAS M, HAMILTON E, CHEUNG R, et al. Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect[J]. Bone, 1996, 18(3):253-259. [61] ZHANG W, SHEN Y, PAN H, et al. Effects of strontium in modified biomaterials[J]. Acta Biomater, 2011, 7(2):800-808. [62] ISAAC J, NOHRA J, LAO J, et al. Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells[J]. Eur Cell Mater, 2011, 21:130-143. [63] RAFFALT A C, ANDERSEN J E, CHRISTGAU S. Application of inductively coupled plasma-mass spectrometry (ICP-MS) and quality assurance to study the incorporation of strontium into bone, bone marrow, and teeth of dogs after one month of treatment with strontium malonate[J]. Anal Bioanal Chem, 2008, 391(6):2199-2207. |
[1] | XU Xiao-jun, WANG Shen-lin. Probing Membrane Protein Interactions by 19F Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 238-251. |
[2] | GE Yu-wei, LIU Mai-li, GAN Zhe-hong, LI Cong-gang. Measurements of Proton Chemical Shift Anisotropy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 255-267. |
[3] | JIANG Ting-ting, FU Xiao-bin, WU Jin-ze, WANG Jia-chen, YAO Ye-feng, ZHOU Bing. Structure and Dynamics of Polymer-Ceramic Interface in Li1.5Al0.5Ge1.5P3O12/Polyether Solid Electrolyte:A Solid-State NMR Study [J]. Chinese Journal of Magnetic Resonance, 2017, 34(4): 429-438. |
[4] | SUN Yi, CHEN Yan-ke, LI Jian-ping, ZHAO Yong-xiang, YANG Jun. Efficiency of Double Cross Polarization in Magic-Angle Spinning Solid-State NMR Studies on Membrane Proteins [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 257-265. |
[5] | LI Cheng-wei, FAN Dong-wei, JIANG Jia-qi, DU Guo-hong, WANG Wei-min. Measuring Bone Mineral Density with NMR [J]. Chinese Journal of Magnetic Resonance, 2016, 33(3): 468-478. |
[6] | PENG Yong-jin, SUN Ping-chuan, LI Bao-hui. Dynamic Evolution in PVPh/PEO Blend Studied by Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2016, 33(2): 188-197. |
[7] | HAN Ming-yue,ZHENG Hui,HU Bing-wen*,YANG Guang*. Compressed Sensing Reconstruction with Iterative Soft Thresholding for Two-Dimensional Solid-State NMR Spectra with Broad Peaks [J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 551-562. |
[8] | XU Wei-jing,LIU Qing-hua,HU Bing-wen*,CHEN Qun. Structures of Crystalline Poly(ethyl oxide)/LiAsF6 Complexes Determined by Solid-State High-Resolution 13C Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 399-408. |
[9] | DING Li-hong1,2,LIU Xiao-long2,WANG Qiang2,LIU Wen-tao1,ZHU Cheng-shen1,ZHENG An-min2,DENG Feng2*. Solid-State NMR Studies of TBA3[VW5O19] and TBA4[PVW11O40] [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 409-418. |
[10] | XIAO Ting,YAO Ye-feng*. Local and Collective Chain Motions in Semi-Crystalline Polyethylenes—A Solid-State NMR Approach [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 208-227. |
[11] | YU Gui-yun1,PENG Lu-ming2*. Solid-State NMR Studies of Layered Double Hydroxides: A Review [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 228-247. |
[12] | GUO Syuan-ming1,CHANG Chi-fon2,CHAN Jerry C C1*?. Conformation of the N-Terminal Fragment of Human Salivary Statherin [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 283-290. |
[13] | WANG Fen-fen1,CHEN Tie-hong1,SUN Ping-chuan1,2,3*. Heterogeneous Structure and Miscibility of Phenylboronic Acid-Rich Chitosan Nanoparticles as Revealed by Advanced Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 354-362. |
[14] | CHENG Ren-hao,WU Zhen,HUANG Po-chi,KE Chi-cheng,DING Shang-wu*. Sensitivity Enhancement of Multiple Quantum and Satellite Transition Magic Angle Spinning Spectra by Optimizing the Initial State [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 363-372. |
[15] | SHEN Ming1,5,ROOPCHAND Rabia2,MANANGA Eugene S3*,AMOUREUX Jean-paul1,5,CHEN Qun1,BOUTIS Gregory S4*,HU Bing-wen1*. Theoretical Calculation of a Composite Pulse with 8-Step Phase Cycling for 2H Broadband Excitation by Average Hamiltonian Theory [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 373-381. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||