[1] Coma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chem Rev, 1995, 95: 559-614.
[2] 田部浩三, 小野嘉夫, 御圆生诚等[日]. 新固体酸和碱及其催化作用[M]. 北京: 化学工业出版社, 1992.
[3] Noda T, Suzuki K, Katada N, et al. Combined study of IRMS-TPD measurement and DFT calculation on Br nsted acidity and catalytic cracking activity of cation-exchanged Y zeolites[J]. J Catal, 1994, 259(2): 203-210.
[4] Huang J, Jiang Y J, Marthala V R R, et al. In situ 1H MAS NMR investigations of the H/D exchange of alkylaromatic hydrocarbons on zeolites H-Y, La, Na-Y, and H-ZSM-5[J]. Micropor Mesopor Mater, 2007, 99(1-2): 86-90.
[5] Bregolato M, Bolis V, Busco C, et al. Methylation of phenol over high-silica beta zeolite: Effect of zeolite acidity and crystal size on catalyst behaviour[J]. J Catal, 1994, 245(2): 285-300.
[6] Busca G. Acid catalysts in industrial hydrocarbon chemistry[J]. Chem Rev, 2007, 107(11): 5 366-5 410.
[7] Corma A, Sharifah B A H, Iborra S, et al. Lewis and Brnsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides[J]. J Catal, 2005, 234(2): 340-347.
[8] Stepanov A G, Arzurnanov S S, Luzgin M V, et al. In situ 1H and 13C MAS NMR study of the mechanism of H/D exchange for deuterated propane adsorbed on H-ZSM-5[J]. J Catal, 2005, 235(1): 221-228.
[9] Haouas M, Walspurger S, Taulelle F, et al. The initial stages of solid acid-catalyzed reactions of adsorbed propane. A mechanistic study by in situ MAS NMR[J]. J Am Chem Soc, 2004, 126: 599-606.
[10] Cejka J, Wichterlova B. Acid-catalyzed synthesis of mono- and dialkyl benzenes over zeolites: Active sites, zeolite topology, and reaction mechanisms[J]. Catal Rev-Sci Eng, 2002, 44: 375-421.
[11] Haw J F, Nicholas J B, Xu T, et al. Physical organic chemistry of solid acids: Lessons from in situ NMR and theoretical chemistry[J]. Acc Chem Res, 1996, 29(6): 259-267.
[12] Olah G A, Prakash G K S, Sommer J. Superacids[M]. Wiley &Sons: New York, 1985.
[13] Farcasiu D, Ghenciu A. Carbodications. 3. The two dications derived from mesityl oxide[J]. J Org Chem, 1991, 56: 6 050-6 052.
[14] Brunner E. Characterization of solid acid by spectroscopy[J]. Catal Today, 1997, 38: 361-376.
[15] Hunger M. Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolite[J]. Solid State Nucl Magn Reson, 1996, 6: 1-29.
[16] Pfeifer H, Freude D, Hunger M. Nuclear magnetic resonance studies on the acidity of zeolites and related catalysts[J]. zeolites, 1985, 5: 274-286.
[17] Haw J F, Nicholas J B. What NMR has told us about solid acidity[J]. Stud Surf Sci Catal, 1996, 101: 573-580.
[18] Lunsford J H, Rothwel W P, et al. Acid sites in zeolite Y: A solid-state NMR and infrared study using trimethylphosphine as a probe molecule[J]. J Am Chem Soc, 1985, 107: 1 540-1 547.
[19] Zwnaziger J, Chmelka B F, Blmuich B, et al. NMR Basic Principles and Progress[M]. Berlin: Springer-Verlag, 1994. 31, 202.
[20] Laws D D, Bitter H M, Jerschow A. Solid-state NMR spectroscopic methods in chemistry[J]. Angew Chem Int Ed, 2002, 41: 3 096-3 129.
[21] Takegoshi K, Mizokami J, Terao T. 1H decoupling with third averaging in solid NMR[J]. Chem Phys Lett, 2001, 341: 540-544.
[22] Detken A, Hardy E H, Ernst M, et al. Sample and efficient decoupling in magic-angle spinning solid-state NMR[J]. Chem Phys Lett, 2002, 356: 198-304.
[23] Fung B M, Khitrin A K, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids[J]. J Magn Reson, 2000, 142: 97-101.
[24] Pa-pe D G, Lesage A, Emsley L. The performance of phase modulated heteronuclear dipolar decoupling schemes in fast magicangle-spinning nuclear magnetic resonance experiments[J]. J Chem Phys, 2003, 119: 4 833-4 841.
[25] Andrew E R, Bradbury A, Geads R. Nuclear magnetic resonance spectra from a crystal rotated at high speed[J]. Natuer, 1958, 182: 1 659-1 659.
[26] Lowe I J. Free induction decays of rotating solids[J]. Phys Rev Lett, 1959, 2: 285-289.
[27] Waugh J S, Huber L M, Haeberlen U. Approach to high-resolution NMR in solids[J]. Phys Rev Lett, 1968, 20: 180-184.
[28] Rhim W K, Elleman D D, Vaughan R W. Enhanced resolution for solid state NMR[J]. J Chem Phys, 1973, 58: 1 772-1 773.
[29] Burum D P, Bielecki A. An improved experiment for heteronuclear correlation 2D-NMR in solids[J]. J Magn Reson, 1991, 94: 645-652.
[30] Burum D P, Rhim W K. Analysis of multiple pulse NMR in solids[J]. J Chem Phys, 1979, 71: 944-956.
[31] Lee M, Goldburg W I. Nuclear-magnetic-resonance line narrowing by a rotating rf field[J]. Phys Rev A, 1965, 140: 1 261-1 266.
[32] Sakellariou D, Lesage A, Hodgkinson P, et al. Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation
[J]. Chem Phys Lett, 2000, 319: 253-260.
[33] Mueller K T, Sun B Q, Chingas G C, et al. Dynamicangle spinning of quadrupolar nuclei[J]. J Magn Reson, 1990, 86: 470-475.
[34] Wu Y, Sun B Q, Pines A, et al. NMR experiments with a new double rotor[J]. J Magn Reson, 1990, 89: 297-231.
[35] Medek A, Harwood J, et al. Multiple-quantum magic-angle spinning NMR: A new method for the study of quadrupolar nuclei in solids[J]. J Am Chem Soc, 1995, 117: 12 779-12 782.
[36] Madhu P K, Goldbourt A, Frydman L, et al. Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses[J]. Chem Phys Lett, 1999, 307: 41-47.
[37] Iuga D, Kentgens A P M. Influencing the satellite transitions of half-integer quadrupolar nuclei for the enhancement of magic angle spinning spectra[J]. J Magn Reson, 2002, 158: 65-72.
[38] Siegel R, Nakashima T T, Wasylishen R E. Sensitivity enhancement of solid-state NMR spectra of half-integer spin quadrupolar nuclei using hyperbolic secant pulses: Applications to spin-5/2 nuclei[J]. Chem Phys Lett, 2006, 421: 529-533.
[39] Mastikhin V M, Mudrakovsky I L, Nosov A V. 1H NMR magic angel spinning studies of heterogeneous catalysis[M]. Prog NMR Spectro, 1991, 23: 259-299.
[40] Brunner E. Solid-state NMR-A power tool for the investigation of surface hydroxyl-groups in zeolites and their interaction with adsorbed probe molecules[J]. J Mol Struct, 1995, 355: 61- 851.
[41] Pfeifer H, Freude D, Hunger M. Nuclear magnetic resonance studies on the acidity of zeolites and related catalysts zeolites[J]. Zeolites, 1985, 5: 274-286.
[42] Decanio E C, Edwards J C, Bruno J W. Solid-state 1H MAS NMR characterization of γ-alumina and modified γ-aluminas[J]. J Catal, 1994 ,148(1): 76-83.
[43] Pfeifer H, Ernst H. NMR of solid surfaces[M]. Ann Rep NMR Spectro, 1993, 5: 28-91.
[44] Hunger M. Brnsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy[J]. Catal Rev-Sci Eng, 1997, 39: 345-393.
[45] Deng F, Yang J, Ye C H. Solid state NMR characterization of solid surface of heterogeneous catalysts[M]. Springer, Modern Magnetic Resonance, Part1, Chemistry, 205-211.
[46] Vaneck E R H, Janssen R, et al. A novel application of nuclear spin-echo double-resonance to aluminophosphates and aluminosilicates[J]. Chem Phys Lett, 1990, 174: 428-432.
[47] Li S H, Zheng A M, Su Y C, et al. Brnsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study[J]. J Am Chem Soc, 2007, 129(36): 11 161-11 171.
[48] Freude D, Hunger M, Pfeifer H, et al. 1H MAS NMR studies on the acidity of zeolites[J]. Chem Phys Lett, 1986, 128: 62-66.
[49] Beck L W, White J L, Haw J F. 1H{27Al} doubleresonance experiments in solids: An unexpected observation in the 1H MAS spectrum of zeolite H-ZSM-5[J]. J Am Chem Soc, 1994, 116(21): 9 657-9 661.
[50] Xu J, Zheng A M, Yang J, et al. Acidity of mesoporous MoOx/ZrO2 and WOx/ZrO2 materials: A combined solid-state NMR and theoretical calculation study[J]. J Phys Chem B, 2006, 110: 10 662-10 671.
[51] Yu H G, Fang H J, Deng F, et al. Acidity of sulfated tin oxide and sulfated zirconia: A view from solid-state NMR spectroscopy[J]. Catal Commun, 2009, 10: 920-924.
[52] Brown S P, Spiess H W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, acromolecular, and supramolecular systems[J]. Chem Rev, 2001, 101: 4 125-4 155.
[53] Huo H, Peng L M, Grey C P. Low temperature 1H MAS NMR spectroscopy studies of proton motion in zeolite H-ZSM-5[J]. J Phys Chem C, 2009, 113(19): 8 211-8 219.
[54] Huang J, Jiang Y J, Hunger M, et al. Concentration and acid strength of hydroxyl groups in zeolites La, Na-X and La, Na-Y with different lanthanum exchange degrees studied by solid-state NMR spectroscopy[J]. Micropor Mesopor Mater, 2007, 104: 129-136.
[55] Huang J, Jiang Y J, Marthala V R R, et al. Characterization and acidic properties of aluminum-exchanged zeolites X and Y[J]. J Phys Chem C, 2008, 112: 3 811-3 818.
[56] Zhang W, Ma D, Liu X, et al. Perfluorotributyl amine as a probe for distinguishing internal and external acidic sites in zeolites by highresolution 1H MAS NMR spectroscopy[J]. Chem Commun, 1999, 12: 1 091-10 921.
[57] Hunger M, Horvath T. Adsorption of methanol on Brnsted acid sites in zeolite H-ZSM-5 investigated by multi-nuclear solid-state NMR spectroscopy[J]. J Am Chem Soc, 1996, 118: 12 302-12 308.
[58] Deng F, Du Y R, Ye C H, et al. Acid sites and hydration behavior of dealmuinated zeolite H-ZSM-5: A high-resolution solid state NMR study[J]. J Phys Chem, 1995, 99: 15 208-15 214.
[59] Ma D, Han X W, Xia S J, et al. An investigation of the roles of surface aluminum and acid sites in the zeolite MCM-22[J]. Chem Eur J, 2002, 8: 162-170.
[60] Zheng A, Deng F, et al. Relationship between 1H chemical shifts of deuterated pyridinium ions and Brnsted acid strength of solid acids[J]. J Phys Chem B, 2007, 111: 3 085-3 089.
[61] Michael A, Meiler W, Michel D, et al. 13C nuclear magnetic resonance investigations of carbon monoxide in decationated zeolites of type Y[J]. J Chem Soc, Faraday Trans I, 1986, 82: 3 053-3 067.
[62] Kao H M, Grey C P. Probing the Brnsted and Lewis acidity of zeolite HY: A 1H/27Al and 15N/27Al TRAPDOR NMR study of omethylamine adsorbed on HY[J]. J Phys Chem, 1996, 100: 5 105-5 117.
[63] Xu T, Kob N, Drago R S, et al. A solid acid catalyst at the threshold of superacid Strength: NMR, calorimetry, and density functional theory studies of silica-supported aluminum chloride[J]. J Am Chem Soc, 1997, 119(50): 12 231-12 239.
[64] Lunsford J H, Rothwell W P, Shen W. Acid sites in zeolite Y: a solid-state NMR and infrared study using trimethylphosphine as a probe molecule[J]. J Am Chem Soc, 1985, 107(6): 1 540-1 547.
[65] Kao H M, Grey C P. Determination of the 31P-27Al J-coupling constant for trimethylphosphine bound to the Lewis acid site of zeolite HY
[J]. J Am Chem Soc, 1997, 119(3): 627-628.
[66] Zhao B, Pan H, Lunsford J H. Characterization of [(CH3)3P-H]+ complexes in normal HY, dealuminated HY, and H-ZSM-5 zeolites using 31P solid-state NMR spectroscopy[J]. Langmuir, 1999, 15(8): 2 761-2 765.
[67] Luo Q, Deng F, et al. Using trimethylphosphine as a probe molecule to study the acid sites in Al-MCM-41 materials by solid-state NMR spectroscopy[J]. J Phys Chem B, 2003, 107: 2 435-2 442.
[68] Engelhardt G, Michel D. High-Resolution Solid-State NMR of Silicates and Zeolites[M]. John Wiley, 1987.
[69] Gilson J P, Edwards G C, et al. Pentacoordinated aluminum in zeolites and aluminosilicates[J]. J Chem Soc, Chem Commun, 1987, 2: 91-92.
[70] Maciel G E, Chuang I S, Haw J F, et al. NMR studies of pyridine on silica-alumina[J]. J Am Chem Soc, 1983, 105(17): 5 529-5 535.
[71] Haw J F, Chuang I S, et al. Surface titration of silica-alumina monitored by nitrogen-15 NMR with cross polarization and magic-angle spinning[J]. J Am Chem Soc 1983, 105(24): 7 206-7 207.
[72] Haw J F, Zhang J, Shimizu K, et al. NMR and theoretical study of acidity probes on sulfated zirconia catalysts[J]. J Am Chem Soc, 2000, 122(50): 12 561-12 570.
[73] Rothwell W P, Shen W X, Lunsford J H. Solid-state phosphorus-31 NMR of a chemisorbed phosphonium ion in HY zeolite: Observation of proton-phosphorus-31 coupling in the solid-state[J]. J Am Chem Soc, 1984, 106(8): 2 452-2 453.
[74] Chu P J, Carvajal R R, Lunsford J H. Direct NMR spinning sideband analysis for a dipolar coupled system: structure elucidation of a proton-trimethylphosphine complex in LaHY zeolites[J]. Chem Phys Lett, 1990, 175(4): 407-412.
[75] Bendada A, DeRose E F, Fripiat J J. Motions of trimethylphosphine on the surface of acid catalysts[J]. J Phys Chem, 1994, 98(14): 3 838-3 842.
[76] Kao H M, Grey C P. Characterization of the Lewis acid sites in zeolite HY with the probe molecule trimethylphosphine, and 31P/27Al double resonance NMR[J]. Chem Phys Lett, 1996, 259(3-4): 459-464.
[77] Kao H M, Grey C P, et al. Activation conditions play a key role in the activity of zeolite CaY: NMR and product studies of Brnsted acidity
[J]. J Phys Chem A, 1998, 102(28): 5 627-5 638.
[78] Kao H M, Liu H, Jiang J C, et al. Determining the structure of trimethylphosphine bound to the Brnsted acid site in zeolite HY: Doubleresonance NMR and ab initio studies[J]. J Phys Chem B, 2000, 104(20): 4 923-4 933.
[79] Osegovic J P, Drago R S. Measurement of the global acidity of solid acids by 31P MAS NMR of chemisorbed triethylphosphine oxide[J]. J Phys Chem B, 2000, 104(1): 147-154.
[80] Lunsford J H. Characterization of acidity in zeolites and related oxides using trimethylphosphine as a probe[J]. Top Catal 1997, 4: 91-98.
[81] Wei W, Hunger M. Reactivity of surface alkoxy species on acidic zeolite catalysts[J]. Acc Chem Res, 2008, 41: 895-904.
[82] Huang J, Jiang Y, et al. Insight into the mechanisms of the ethylbenzene disproportionation: Transition state shape selectivity on zeolites[J]. J Am Chem Soc, 2008, 130: 12 642-12 644.
[83] Guo C X, Qian Z H, et al. Alkylation of isobutane with butenes over solid superacids, SO42-/ZrO2 and SO42-/TiO2[J]. Appl Catal A, 1994, 107: 229-238.
[84] Jacobs P A. Carboniogenic Activity of Zeolites[M]. Amsterdam: Elsevier Scientific Publishing Company, 1997. 168-169; 36-38.
[85] Biaglow A I, Gorte R J, Kokotailo G T, et al. Probe of Brnsted site acidity in zeolites 13C chemical shift of acetone[J]. J Catal, 1994, 148: 779-786.
[86] Zheng A, Zhang H, Lu X, et al. Theoretical predictions of 31P NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid Catalysts[J]. J Phys Chem B, 2008, 112: 4 496-4 505.
[87] Zheng A, Huang S J, Chen W H, et al. 31P chemical shift of adsorbed trialkylphosphine oxides for acidity characterization of solid acids catalysts[J]. J Phys Chem A, 2008, 112: 7 349-7 356.
[88] Zhao Q, Chen W H, Huang S J, et al. Discernment and quantification of internal and external acid sites on zeolites[J]. J Phys Chem B, 2002, 106: 4 462-4 469.
[89] Rakiewicz E F, Mueller K T, et al. Characterization of acid sites in zeolite and other inorganic systems using solid state 31P NMR of the probe molecule trimethylphosphine oxide[J]. J Chem B, 1998, 102: 2 890-1 896.
[90] Huang S J, Zhao Q, Chen W H, et al. Structure and acidity of Mo/H-MCM-22 catalysts studied by NMR spectroscopy[J]. Catal Today, 2004, 97: 25-34.
[91] Chen W H, Ko H H, Sakthivel A, et al. A solid-state NMR, FT-IR, and TPD study on acid properties of sulfated and metal-promoted zirconia: influence of promoter and sulfation treatment[J]. Catal Today, 2006, 116: 111-120.
[92] Chen W H, Tsai T C, Jong S J, et al. Effect of surface modification on coking, deactivation and para-selectivity of H-ZSM-5 zeolites during ethylbenzene disproportionation[J]. J Mol Catal A, 2002, 181: 41-55.
[93] Bauer F, Chen W H, Ernst H, et al. Selectivity improvement in xylene isomerization[J]. Micropor Mesopor Mater, 2004, 72: 81-89.
[94] Bauer F, Chen W H, Bilz E, et al, Surface modification of nano-sized H-ZSM-5 and HFER by pre-coking and silanization[J]. J Catal, 2007, 251: 258-270.
[95] Chen W H, Huang S J, Lai C S, et al. Effects of binder, coking and regeneration on acid properties of H-mordenite during TPD reaction\
[J]. Res Chem Intermed, 2003, 29: 761-772.
[96] Chen W H, Huang S J, Sakthivel A, et al. Acidity characterization of nanocrystalline H-ZSM-5 zeolites by 31P MAS NMR of adsorbed phosphine oxide probes[M]. NanoArchitectured and Nanostructrued Materials: Fabri cation, Control and Properties, Y. Champion and H.J. Fecht Eds., Germany: Wiley-VCH, 2004. 127-134.
[97] Zhao Q, Chen W H, Huang S J, et al. Qualitative and quantitative determination of acid sites on solid acid catalysts[J]. Stud Surf Sci Catal, 2003, 145: 205-209.
[98] Karra M, Mueller K T, et al. NMR characterization of Brnsted acid sites in faujasitic zeolites with use of perdeuterated trimethylphosphine oxide[J]. J Am Chem Soc, 2002, 124: 902-903.
[99] Huang S J, Tseng Y H, Liu S B, et al. Spectral editing based on selective excitation and Lee-Goldburg cross-polarization under magic angle spinning[J]. Solid State Nucl Magn Reson, 2006, 29: 272-277.
[100] Wang Y, Zhuang J, Bao X H, et al. Study on the external surface acidity of MCM-22 zeolite: theoretical calculation and 31P MAS NMR[J]. J Phys Chem B, 2004, 108: 1 386-1 391.
[101] Haag W O, Lago R M, Weisz P B. The active site of acidic aluminosilicate catalysts[J]. Nature, 1984, 309: 589-591.
[102] Ma D, Deng F, Fu R Q, et al. MAS NMR studies on the dealumination of zeolite MCM-22[J]. J Phys Chem B, 2001, 105: 1 770-1 779.
[103] Sutovich K J. Peters A W, Rakiewicz E F, et al. Simultaneous quantification of Brnsted- and Lewis-acid sites in a USY zeolite[J]. J Catal, 1999, 183: 155-158.
[104] Raichle A, Traa Y, Weitkamp J. Producing a high-quality synthetic steamcracker feedstock from different aromatic model components of pyrolysis gasoline on bifunctional zeolite catalysts[J]. Catal Today, 2002, 75: 133-139.
[105] Peng L M, Chupas P J, Grey C P. Measuring Brnsted acid densities in zeolite HY with diphosphine molecules and solid state NMR spectroscopy[J]. J Am Chem Soc, 2004, 126: 12 254-12 255.
[106] Yang J, Zheng A M, Zhang M J, et al. Brnsted and Lewis acidity of the BF-3/γ-Al2O3 alkylation catalyst as revealed by solid-state NMR spectroscopy and DFT quantum chemical calculations[J]. J Phys Chem B, 2005, 109: 13 124-13 131.
[107] Peng L M, Liu Y, Grey C P, et al. Detection of Brnsted acid sites in zeolite HY with high-field 17O MAS NMR techniques[J]. Nature Mater, 2005, 4(3): 216-219.
[108] Peng L M, Hou H, Liu Y, et al. 17O Magic angle spinning NMR studies of Brnsted acid sites in zeolites HY and H-ZSM-5[J]. J Am Chem Soc, 2007, 129: 335-346.
[109] Yang J, Janik M J, Ma D, et al. Location, acid strength, and mobility of the acidic protons in Keggin 12-H-3PW-12-O-40: A combined solid-state NMR spectroscopy and DFT quantum chemical calculation study[J]. J Am Chem Soc, 2005, 127: 18 274-18 280.
[110] Blumenfeld A L, Fripiat J J. Characterization of Brnsted and Lewis acidity in zeolites by solid state NMR and the recent progress in the REDOR technique[J]. Magn Reson Chem, 1999, 37: 118-125. |