Chinese Journal of Magnetic Resonance ›› 2009, Vol. 26 ›› Issue (4): 437-456.
Received:
2009-08-03
Online:
2009-12-05
Published:
2009-12-05
CLC Number:
FU Ri-Qiang. High-Resolution Solid-State NMR Spectroscopy of Membrane Bound Proteins and Peptides Aligned in Hydrated Lipids[J]. Chinese Journal of Magnetic Resonance, 2009, 26(4): 437-456.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Duong Ly K C, Nanda V, Degrado W F, et al. The conformation of the pore region of the M2 proton channel depends on lipid bilayer Environment[J]. Protein Sci, 2005, 14: 856-861.[2] Fu R, Brey W W, Cross T A. Aligned membrane oroteins: Structural studies[J]. Encyclopedia of NMR, in press. [3] Page R, Li C, Hu J, et al. Lipid bilayers: An essential environment for the understanding of membrane proteins[J]. Magn Reson Chem, 2007, 45: S2-S11.[4] Fraser C M, Gocayne J D, White O, et al. The Minimum gene complement of mycoplasma genitalium[J]. Science, 1995, 270: 397-403.[5] Patrzykat A, Douglas S. Antimicrobial peptides: cooperative approaches to protection[J]. Protein Pept Lett, 2005, 12: 19-25.[6] Brogden K A. Antimicrobial peptides: Pore formers of metabolic inhibitors in bacteria?[J]. Nat Rev Microbiol, 2005, 3: 238-250.[7] Campagna S, Saint N, Molle G, et al. Structure and mechanism of action of the antimicrobial peptide piscidin[J]. Biochem, 2007, 46: 1 771-1 778.[8] Yeaman M, Yount N. Unifying themes in host defence effector polypeptides [J]. Nat Rev Microbiol, 2007, 5: 727-740.[9] Doyle D A, Cabral J M, Pfuetzner R A, et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity[J]. Science, 1998, 280: 69-77.[10] Jian Y, Lee A, Chen J, et al. Crystal structure and mechanism of a calcium-gated potassium channel[J]. Nature, 2002, 417: 515-522.[11] Kukol A, Adams P D, Rice L M, et al. Experimentally based orientational refinement of membrane protein models: A structure for the influenza A M2 H+ channel[J]. J Mol Biol, 1999, 286: 951-962.[12] Manor J, Mukherjee P, Lin Y S, et al. Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies[J]. Structure, 2009, 17: 247-254.[13] Fernandez C, Hilty C, Wider G, et al. NMR structure of the integral membrane protein OmpX[J]. J Mol Biol, 2004, 336: 1 211-1 221.[14] Traaseth N J, Verardi R, Torgersen K D, et al. Spectroscopic validation of the pentameric structure of phospholamban[J]. Proc Nat Acad Sci USA, 2007, 104: 14 676-14 681.[15] Fu R, Cross T A. Solid-state NMR investigation of protein and polypeptide structure[J]. Annu Rev Biophys Biomol Struct, 1999, 28: 235-268.[16] Marassi F M, Opella S J. NMR structural studies of membrane proteins[J]. Curr Opin Struct Biol, 1998, 8: 640-648.[17] Opella S J, Marassi F M. Structure determination of membrane proteins by NMR spectroscopy[J]. Chem Rev, 2004, 104: 3 587-3 606.[18] Opella S J, Zeri A C, Park S H. Structure, dynamics, and assembly of filamentous bacteriophages by nuclear magnetic resonance spectroscopy[J]. Annu Rev Phys Chem, 2008, 59: 635-657.[19] Vosegaard T, Nielsen N C. Towards high-resolution solid-state NMR on large uniformly 15N and [13C, 15N] labeled membrane proteins in oriented lipid bilayers[J]. J Biomol NMR, 2002, 22: 225-247.[20] Ramamoorthy A, Wei Y, Lee D K. PISEMA solid-state NMR spectroscopy[J]. Annu Reports on NMR Spectroscopy, 2004, 52: 1-52.[21] Opella S J. NMR and membrane proteins[J]. Nat Struct Biol, 1997,4 NMR Supplements: 845-848.[22] Ketchem R, Hu W, Cross T A. High-resolution conformation of gramicidin A in a lipid bilayer by solid state NMR[J]. Science, 1993, 261: 1 457-1 460.[23] Ketchem R R, Roux B, Cross T A. High-resolution polypeptide structure in a lameller phase lipid environment from solid state NMR derived orientational constraints[J]. Structure, 1997, 5: 1 655-1 669.[24] Valentine K G, Liu S F, Marassi F M, et al. Structure and topology of a peptide segment of the 6th transmembrane domain of the saccharomyces cerevisiae alpha-factor receptor in phospholipid bilayers[J]. Biopolymers, 2001, 59: 243-256.[25] Opella S J, Marassi F M, Gesell J J, et al. Structures of M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy[J]. Nat Struct Biol, 1999, 6: 374-379.[26] Tian C, Gao F P, Pinto L H, et al. Initial structural and dynamic characterization of the M2 protein transmembrane and amphipathic helices in lipid bilayers[J]. Protein Sci, 2003, 12: 2 597-2 605.[27] Nishimura K, Kim S, Zhang L, et al. The closed state of a H+ Channel helical bundle combining precise orientational and distance restraints from solid state NMR[J]. Biochem., 2002, 41: 13 170-13 177.[28] Hu J, Qin H, Li C, et al. Structural biology of transmembrane domains: Effieicient production and characterization of transmembrane peptides by NMR[J]. Protein Sci, 2007, 16: 2 153-2 165.[29] Marassi F M, Opella S J. Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints[J]. Protein Sci, 2003, 12: 403-411.[30] DeAngelis A A, Howell S C, Nevzorov A A, et al. Structure determination of a membrane protein with two transmembrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy[J]. J Am Chem Soc, 2006, 128: 12 256-12 257.[31] Park S H, de Angelis A A, Nevzorov A A, et al. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles[J]. Biophys J, 2006, 91: 3 032-3 042.[32] Gamblin S J, Haire L F, Russell R J, et al. The structure and receptor binding properties of the 1918 influenza hemagglutinin[J]. Science, 2004, 203: 1838-1842.[33] Fu R, Smith S A, Bodenhausen G. Recoupling of heteronuclear dipolar interactions in solid state magic-angle spinning NMR by simultaneous frequency and amplitude modulation[J]. Chem Phys Lett, 1997, 272: 361-369.[34] Fu R, Cotten M, Cross T A. Inter- and intramolecular distance measurements by solid state magic angle spinning NMR: Determination of gramicidin A channel dimer structure in hydrated phospholipid bilayers[J]. J Biomol NMR, 2000, 16: 261-268.[35] Cotten M, Fu R, Cross T A. Solid state NMR and hydrogen-deuterium exchange in a bilayer solubilized peptide: Structural and mechanistic implications[J]. Biophys J, 1999, 76: 1 179-1 189.[36] Luo W, Mani R, Hong M. Side-chain conformation of the M2 transmembrane peptide proton channel of influenza A virus from 19F solidstate NMR[J]. J Phys Chem B, 2007, 111: 10 825-10 832.[37] Witter R, Nozirov F, Sternberg U, et al. Solid-state 19F NMR spectroscopy reveals that Trp41 participates in the gating mechanism of the M2 protein channel of influenza A virus[J]. J Am Chem Soc, 2008, 130: 918-924.[38] Cady S D, Mishanina T V, Hong M. Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: The role of Ser31 in amantadine binding[J]. J Mol Biol, 2009, 385: 1 127-1 141.[39] Hu J, Fu R, Nishimura K, et al. Histidines: Heart of the H+ channel from influenza A virus[J]. Proc Nat Acad Sci USA, 2006, 103: 6 865-6 870.[40] Cross T A, Opella S J. Protein structure by solid-state NMR[J]. J Am Chem Soc, 1983, 105: 306-308.[41] Yamaguchi S, Huster D, Waring A, et al. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy[J]. Biophys J, 2001, 81: 2 203-2 214.[42] de Angelis A A, Jones D H, Grant C V, et al. NMR experiments on aligned samples of membrane proteins[J]. Methods Enzymol, 2005, 394: 350-382.[43]Li C, Gao F P, Qin H, et al. Uniformly aligned full-length membrane proteins in lipid-crystalline bilayers for structural characterization[J]. J Am Chem Soc, 2007, 129: 4 335-4 343.[44] Hu J, Asbury T, Achuthan S, et al. Backbone structure of the amantadine-blocked transmembrane domain M2 proton channel from influenza A virus[J]. Biophys J, 2007, 92: 4 335-4 343.[45] Kamihira M, Vosegaard T, Mason A J, et al. Structural and orientational constraints of bacteriorhodopsin in purple membranes determined by oriented-sample solid-state NMR spectroscopy[J]. J Struc Biol, 2005, 149: 7-16.[46] Dvinskikh S V, Durr U, Yamamoto K, et al. A high-resolution solid state NMR approach for the structural studies of bicelles[J]. J Am Chem Soc, 2006, 128: 6 326-6 327.[47] Chekmenev E Y, Gor’kov P L, Cross T A, et al. Flowthrough lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy[J]. Biophys J, 2006, 91: 3 076-3 084.[48] DeAngelis A A, Nevzorov A A, Park S H, et al. High-resolution NMR spectroscopy of membrane proteins in “Unflipped” bicelles[J]. J Am Chem Soc, 2004, 126: 15 340-15 341.[49] Prosser R S, Evanics F, Kitevski J L, et al. Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins[J]. Biochem, 2006, 18: 8 453-8 465.[50] de Angelis A A, Opella S J. Bicelle samples for solid-state NMR of membrane proteins[J]. Nat Protoc, 2007, 2: 2 332-2 338.[51] Franzin C M, Teriete P, Marassi F M. Structural similarity of a membrane protein in micelles and membranes[J]. J Am Chem Soc, 2007, 129: 8 078-8 079.[52] Luo W, Cady S D, Hong M. Immobilization of the influenza A M2 transmembrane peptide in virus envelope-mimetic lipid membranes: A solid-state NMR investigation[J]. Biochem, 2009, 48: 6 361-6 368.[53] Chekmenev E Y, Jones S M, Nikolayeva Y N, et al. High-field NMR studies of molecular recognition and structure-function relationships in antimicrobial piscidins at the water-lipid bilayer interface[J]. J Am Chem Soc, 2006, 128: 5 308-5 309.[54] Fu R, Gordon E D, Hibbard D J, et al. High resolution heteronuclear correlation NMR spectroscopy of an antimicrobial peptide in aligned lipids bilayers: Peptidewater interactions at the water-bilayer interface[J]. J Am Chem Soc, 2009, 131: 10 830-10 831.[55] Oldfield E, Rothgeb T M. NMR of individual sites in protein crystals. Magnetic Ordering Effects[J]. J Am Chem Soc, 1980, 102: 3 635-3 637.[56] Cotten M, Soghomonian V G, Hu W, et al. High resolution and high fields in biological solid-state NMR[J]. Solid State Nucl Magn Reson, 1997, 9: 77-80.[57] Sanders C R, Landis G C. Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies[J]. Biochem, 1995, 34: 4 030-4 040.[58] Cross V R, Hester R K, Waugh J S. Single coil probe with transmission-line tuning for nuclear magnetic double resonance\[J\]. Rev Sci Instr, 1976, 47: 1 486-1 488.[59] Kim Y W, Earl W I, Norberg R E. Cryogenic probe with low-loss transmission-line for nuclear magnetic resonance[J]. J Magn, Reson A, 1995, 116: 139-144.[60] Li C, Mo Y, Hu J, et al. Analysis of RF heating and sample stability in aligned static solid state NMR spectroscopy[J]. J Magn Reson, 2006, 180: 51-57.[61] Paulson E K, Martin R K, Zilm K W. Cross polarization and radio frequency field homogeneity and circuit balancing in high field solid state NMR probes[J]. J Magn Reson, 2004, 171: 314-323.[62] Gor’kov P L, Chekmenev E Y, Fu R, et al. A large volume flat coil probe for oriented membrane proteins[J]. J Magn Reson, 2006, 181: 9-20.[63] Stringer J A, Bronnimann C E, Mullen C G, et al. Reduction of RF-induced sample heating with a scroll coil resonator structure for solidstate NMR probes[J]. J Magn Reson, 2005, 173: 40-48.[64] Grant C V, Sit S L, de Angelis A A, et al. An efficient 1H/31P double-resonance solid-state NMR probe that utilizes a scroll coil[J]. J Magn Reson, 2007, 188: 279-284.[65] Krahn A, Priller U, Emsley L, et al. Resonator with reduced sample heating and increased homogeneity for solid-state NMR[J]. J Magn Reson, 2008, 191: 78-92.[66] Doty F D, Kulkami J, Turner C, et al. Using a cross-coil to reduce RF heating by an order of magnitude in triple resonance multinuclear MAS at high fields[J]. J Magn Reson, 2006, 182: 239-253.[67] Gor’kov P L, Chekmenev E Y, Li C, et al. Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz[J]. J Magn Reson, 2007, 185: 77-93.[68] Waugh J S. Uncoupling of local field spectra in nuclear magnetic resonance: Determination of atomic positions in solids\[J\]. Proc Nat Acad Sci USA, 1976, 73: 1 394-1 397.[69] Asbury T, Quine J R, Achuthan S, et al. PIPATH: An optimized algorithm for generating α-Helical structure from PISEMA data[J]. J Magn Reson, 2006, 183: 300-309.[70] Wu C H, Ramamoorthy A, Opella S J. High-resolution heteronuclear dipolar solid-state NMR spectroscopy[J]. J Magn Reson Ser A, 1994, 109: 270-272.[71] Bielecki A, Kolbert A C, de Groot H J M, et al. Frequency-switched lee-goldburg sequences in solids[J]. Advan Magn Reson, 1990, 14: 111-150.[72] Gan Z. Spin dynamics of polarization inversion spin exchange at the magic angle in multiple spin systems[J]. J Magn Reson, 2000, 143: 136-143.[73] Waugh J S, Huber L M, Haeberlen U. Approach to high-resolution NMR in solids[J]. Phys Rev Lett, 1968, 20: 180.[74]Rhim W K, Pines A, Waugh J S. Time-reversal experiments in dipolar-coupled spin systems[J]. Phys Rev B, 1971, 3: 684.[75] Burum D P, Linder M, Ernst R R. Low-power multipulse line narrowing in solid-state NMR[J]. J Magn Reson, 1981, 44: 173-188.[76] Marassi F M, Opella S J. A solid-state NMR index of helical membrane proteins structure and topology[J]. J Magn Reson, 2000, 144: 150-155.[77] Wang J, Denny J, Tian C, et al. Imaging membrane protein helical wheels[J]. J Magn Reson, 2000, 144: 162-167.[78] Fu R, Tian C, Kim H, et al. The effect of Hartmann-Hahn mismatching on polarization inversion spin exchange at the magic angle[J]. J Magn Reson, 2002, 159: 167-174.[79] Yamamoto K, Lee D K, Ramamoorthy A. Broadband-PISEMA solid state NMR spectroscopy[J]. Chem Phys Lett, 2005, 407: 289-293.[80] Dvinskikh S V, Sandstrom D. Frequency offset refocused PISEMA-type sequences[J]. J Magn Reson, 2005, 175: 163-169.[81] Nevzorov A A, Opella S J. A “Magic Sandwich” pulse sequence with reduced offset dependence for high-resolution separated local field spectroscopy[J]. J Magn Reson, 2003, 164: 182-186.[82] Dvinskikh S V, Yamamoto K, Ramamoorthy A. Heteronuclear isotropic mixing separated local field NMR spectroscopy[J]. J Chem Phys, 2006, 125: 034507.[83] Dvinskikh S V, Yamamoto K, Ramamoorthy A. Separated local field NMR spectroscopy by windowless isotropic mixing[J]. Chem Phys Lett, 2006, 419: 168-173.[84] Yamamoto K, Dvinskikh S V, Ramamoorthy A. Measurement of heteronuclear dipolar couplings using a rotating frame solid-state NMR experiment[J]. Chem Phys Lett, 2006, 419: 533-536.[85]Nevzorov A A, Opella S J. Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples[J]. J Magn Reson, 2007, 185: 59-70.[86] Ozdirekcan S, Rijkers D T, Liskamp R M, et al. Influence of flanking residues on tilt and rotation angles of transmembrane peptides in lipid bilayers. A solid-state 2H NMR study\[J]. Biochem, 2005, 44: 1 004-1 012.[87] Sinha N, Filipp F V, Jairam L, et al. Tailoring C-13 labeling for triple-resonance solid-state NMR experiments on aligned samples of proteins[J]. Magn Reson Chem, 2007, 45: S107-S115.[88] Wu C H, Opella S J. Shiftless nuclear magnetic resonance spectroscopy[J]. J Chem Phys, 2008, 128: 052312.[89] Mesleh M F, Veglia G, DeSilva T M, et al. Dipolar waves as NMR maps of protein structure[J]. J Am Chem Soc, 2002, 124: 4 206-4 207.[90] Fu R M T, Saager R J, et al. High-resolution heteronuclear correlation spectroscopy in solid state NMR of aligned samples[J]. J Mag Reson, 2007, 188: 41-48.[91] Wu C H, Ramamoorthy A, Gierasch L M, et al. Simultaneous characterization of the amide 1H chemical shift, 1H-15N dipolar, and 15N chemical shift interaction tensors in a peptide bond by three-dimensional solid-state NMR spectroscopy[J]. J Am Chem Soc, 1995, 117: 6 148-6 149.[92] Ramamoorthy A, Wu C H, Opella S J. Three-dimensional solid-state NMR experiment that correlates the chemical shift and dipolar coupling frequencies of two heteronuclei[J]. J Magn Reson Ser B, 1995, 107: 88-90.[93] Jelinek R, Ramamoorthy A, Opella S J. High-resolution three-dimensional solid-state NMR spectroscopy of a uniformly 15Nlabeled protein[J]. J Am Chem Soc, 1995, 117: 12 348-12 349.[94] Hohwy M, Nielsen N C. Elimination of high order terms in multiple pulse nuclear magnetic resonanc spectroscopy: Application to homonuclear decoupling in solids[J]. J Chem Phys, 1997, 106: 7 571-7 586.[95] Caravatti P, Braunschweiler L, Ernst R R. Heteronuclear correlation spectroscopy in rotating solids[J]. Chem Phys Letts, 1983, 100: 305-310.[96] Silphaduang U, Noga E J. Peptide Antibiotics in Mast Cells of Fish[J]. Nature, 2001, 414: 268-269.[97] Lauth X, Shike H, Burns J C, et al. Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass[J]. J Biol Chem, 2002, 277: 5 030-5 039.[98] Ottiger M, Delaglio F, Bax A. Measurement of J and dipolar coupling from simplified two-dimensional NMR spectra[J]. J Mag Reson, 1998, 131: 373-378.[99] Wei Y, Lee D K, Hallock K J, et al. One-dimensional 1H-detected solid state NMR experiment to determine amide 1H chemical shifts in peptides[J]. Chem Phys Lett, 2002, 351: 42-46.[100] Gopinath T, Veglia G. Sensitivity enhancement in static solid-state NMR experiments via single- and multiple-quantum dipolar coherences[J]. J Am Chem Soc, 2009, 131: 5 754-5 756.[101] Wu C H, Opella S J. Proton-detected separated local field spectroscopy[J]. J Mag Reson, 2008, 190: 165-170.[102] Sinha N, Grant C V, Wu C H, et al. SPINAL modulated decoupling in high field double- and triple-resonance solid-state NMR experiments on stationary samples[J]. J Magn Reson, 2005, 177: 197-202.[103] Qian C, Fu R, Gor’kov P L, et al. 14N polarization inversion spin exchange at magic angle (PISEMA)[J]. J Magn Reson, 2009, 196: 96-99.[104] Suter D, Ernst R R. Spin diffusion in resolved solid-state NMR spectra[J]. Phys Rev B, 1985, 32: 5 608-5 627.[105] Cross T A, Frey M H, Opella S J. 15N spin exchange in a protein[J]. J Am Chem Soc, 1983, 105: 7 471-7 473.[106] Xu J, Struppe J, Ramamoorthy A. Two-dimensional homonuclear chemical shift correlation established by the cross-relaxation driven spin diffusion in solids[J]. J Chem Phys, 2008, 128: 052308.[107] Nevzorov A A. Mismatched hartmann-hahn conditions cause proton-mediated intermolecular magnetization transfer between dilute lowspin nuclei in NMR of static solids[J]. J Am Chem Soc, 2008, 130: 11 282-11 283. |
[1] | XU Xiao-jun, WANG Shen-lin. Probing Membrane Protein Interactions by 19F Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 238-251. |
[2] | GE Yu-wei, LIU Mai-li, GAN Zhe-hong, LI Cong-gang. Measurements of Proton Chemical Shift Anisotropy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 255-267. |
[3] | JIANG Ting-ting, FU Xiao-bin, WU Jin-ze, WANG Jia-chen, YAO Ye-feng, ZHOU Bing. Structure and Dynamics of Polymer-Ceramic Interface in Li1.5Al0.5Ge1.5P3O12/Polyether Solid Electrolyte:A Solid-State NMR Study [J]. Chinese Journal of Magnetic Resonance, 2017, 34(4): 429-438. |
[4] | SUN Yi, CHEN Yan-ke, LI Jian-ping, ZHAO Yong-xiang, YANG Jun. Efficiency of Double Cross Polarization in Magic-Angle Spinning Solid-State NMR Studies on Membrane Proteins [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 257-265. |
[5] | LI Dong-bei, XU Shuai, YU Zhi-wu. Application of Solid-State NMR to Bone and Bone Biomaterials [J]. Chinese Journal of Magnetic Resonance, 2017, 34(1): 115-129. |
[6] | PENG Yong-jin, SUN Ping-chuan, LI Bao-hui. Dynamic Evolution in PVPh/PEO Blend Studied by Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2016, 33(2): 188-197. |
[7] | HAN Ming-yue,ZHENG Hui,HU Bing-wen*,YANG Guang*. Compressed Sensing Reconstruction with Iterative Soft Thresholding for Two-Dimensional Solid-State NMR Spectra with Broad Peaks [J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 551-562. |
[8] | XU Wei-jing,LIU Qing-hua,HU Bing-wen*,CHEN Qun. Structures of Crystalline Poly(ethyl oxide)/LiAsF6 Complexes Determined by Solid-State High-Resolution 13C Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 399-408. |
[9] | DING Li-hong1,2,LIU Xiao-long2,WANG Qiang2,LIU Wen-tao1,ZHU Cheng-shen1,ZHENG An-min2,DENG Feng2*. Solid-State NMR Studies of TBA3[VW5O19] and TBA4[PVW11O40] [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 409-418. |
[10] | XIAO Ting,YAO Ye-feng*. Local and Collective Chain Motions in Semi-Crystalline Polyethylenes—A Solid-State NMR Approach [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 208-227. |
[11] | YU Gui-yun1,PENG Lu-ming2*. Solid-State NMR Studies of Layered Double Hydroxides: A Review [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 228-247. |
[12] | WANG Fen-fen1,CHEN Tie-hong1,SUN Ping-chuan1,2,3*. Heterogeneous Structure and Miscibility of Phenylboronic Acid-Rich Chitosan Nanoparticles as Revealed by Advanced Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 354-362. |
[13] | CHENG Ren-hao,WU Zhen,HUANG Po-chi,KE Chi-cheng,DING Shang-wu*. Sensitivity Enhancement of Multiple Quantum and Satellite Transition Magic Angle Spinning Spectra by Optimizing the Initial State [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 363-372. |
[14] | SHEN Ming1,5,ROOPCHAND Rabia2,MANANGA Eugene S3*,AMOUREUX Jean-paul1,5,CHEN Qun1,BOUTIS Gregory S4*,HU Bing-wen1*. Theoretical Calculation of a Composite Pulse with 8-Step Phase Cycling for 2H Broadband Excitation by Average Hamiltonian Theory [J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 373-381. |
[15] | TANG Xin-qi1,2,ZHANG Zheng-feng1,YANG Jun1*. Heating of Biological Samples in Studies of MAS Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2015, 32(1): 123-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||