Chinese Journal of Magnetic Resonance ›› 2023, Vol. 40 ›› Issue (3): 341-364.doi: 10.11938/cjmr20233051
• Review Article • Previous Articles
KONG Lingwen1,2,KUANG Guangli1,2,*(),WU Xiangyang2
Received:
2023-01-10
Published:
2023-09-05
Online:
2023-03-21
Contact:
*Tel: 13956033702, E-mail: CLC Number:
KONG Lingwen, KUANG Guangli, WU Xiangyang. Research Progress of EPR Spectrometer Under High Frequency and High Field[J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 341-364.
Table 1
Distribution of high magnetic field EPR devices in Europe and America
Laboratory | EPR spectrometer | B/T | v/GHz | T/K |
---|---|---|---|---|
The National High Magnetic Field Laboratory (NHMFL, US) | Heterodyne quasi-optical spectrometer | 12.5 | 120~336 | 1.5~400 |
Transmission spectrometer | 15/17 | 24~660 | 3~309 | |
W-band HiPER spectrometer | 9 | 94 | 4~300 | |
Broadband BWO spectrometer | 25 | 70~1 200 | Depends on the cryostat used | |
Broadband MVNA spectrometer | 45 | 8~1 000 | 0.5~400 | |
XW-band Bruker pulsed spectrometer | 6 | 9~94 | 4~300 | |
The Dresden High Magnetic Field Laboratory (HLD, Germany) | Transmission-probe multi-frequency spectrometer | 70 | 0.1~9 000 | 1.5~300 |
The Grenoble and Toulouses National High Magnetic Field Laboratory (LNCMI, France) | Multifrequency EPR spectrometer operating | 16 | 95~770 | 2.1~300 |
The Nijmegen High Field Magnet Laboratory (HFML, Netherlands) | Free-electron lasers multifrequency EPR spectrometer | 33 | 0.25~120 000 | 4~300 |
Table 2
Distribution of high magnetic field EPR devices in Japan[4]
Place | Source | v/GHz | Detector | B/T | T/K |
---|---|---|---|---|---|
Sendai | Vector network | 50~120 | Diode | 20 | 0.2~300 |
Tsukuba | FIR laser | 250~3 000 | InSb | 40 | 1.8~300 |
Kashiwa | FIR laser | 250~5 000 | InSb | 150 | 10~300 |
Yokohama | Gunn etc. | 20~110 | InSb | 16 | 1.8~300 |
FIR laser | 600~7 000 | ||||
Vector network | 30~660 | Diode | |||
Fukui | Gunn | 95~120 | InSb | 40 | 1.8~300 |
Gyrotron | <610 | InSb | |||
Vector network | 82~800 | Diode | 12 | ||
Osaka | Gunn | 94 | InSb | 55 | 1.4~300 |
FIR laser | 326~3 100 | ||||
Kobe | Gunn+multi | 30~315 | InSb | 40 | 1.8~300 |
BWO | 180~1 200 | ||||
FIR laser | 250~7 000 | ||||
Okayama | Gunn | 35~100 | InSb | 40 | 0.5~300 |
BWO | 300 | ||||
FIR laser | 250~7 000 | 30 |
Fig. 18
230 GHz continuous wave EPR spectra of 50 nm ND samples before and after air annealing. The upper right illustration shows P1 and surface spin (S) contribution to the EPR spectrum; On the left is a drawing representing NDS during annealing. The green solid line represents the EPR experimental spectrum, the red arrow represents the center of P1, and the blue arrow represents the surface spin[48]
Fig. 20
(a) 94 GHz continuous wave EPR spectra in YAG:Ce,Yb ceramics at 1.5 K. The dashed lines are the EPR simulation spectra of Yb3+ and Ce3+ in powder materials. The illustrations are the EPR spectra of Gd3+ in YAG:Ce,Gd single crystals in different directions; (b) 94 GHz continuous wave EPR spectra in YAG:Ce,Cr ceramics at 1.5 K and 5 K, and dashed lines are EPR simulation spectra of Ce3+, Cr3+ and Gd3+ in powder materials[50]
[1] | 苏吉虎, 杜江峰. 电子顺磁共振波谱—原理与应用[M]. 北京: 科学出版社, 2022. |
[2] |
SALIKHOV K M. Electron paramagnetic resonance applications: promising developments at the E K Zavoisky Kazan Physical-Technical Institute of the Russian Academy of Sciences[J]. Physics-Uspekhi, 2016, 59(6): 588-594.
doi: 10.3367/UFNe.2016.02.037760 |
[3] | OLEG Y G, LAWRENCE J B. Very high frequency (VHF) ESR/EPR[M]. New York: Kluwer Academic/Plenum Publishers, 2004. |
[4] | 程佳珺. 脉冲强磁场高频ESR系统的研制及其在磁性材料研究中的应用[D]. 武汉: 华中科技大学, 2015. |
[5] | CHO F H. Developmnt of high-frequency electron paramagnetic resonance (EPR) spectrometer and investigation of paramagnetic defects and impurities in diamonds by multi-frequency EPR spectroscopy[D]. University of Southern California, 2015. |
[6] |
TELSER J, KRZYSTEK J, OZAROWSKI A. High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry[J]. J Biol Inorg Chem, 2014, 19(3): 297-318.
doi: 10.1007/s00775-013-1084-3 pmid: 24477944 |
[7] | KRZYSTEK J, OZAROWSKI A, TELSER J, et al. High-frequency and -field electron paramagnetic resonance of vanadium(IV, III, and II) complexes[J]. Coordin Chem Rev, 2015, 301: 123-133. |
[8] | SMITH G M, LESURF J C G, MITCHELL R H, et al. ESR at millimetre and sub-millimetre wave frequencies[C]// IEE Colloquium on Terahertz Technology and its Applications, London, UK: IET, 1997, 5: 1-6. |
[9] |
SAVITSKY A, MOBIUS K. High-field EPR[J]. Photosynth Res, 2009, 102(2-3): 311-333.
doi: 10.1007/s11120-009-9432-4 |
[10] |
SONG L K, LIU Z L, KAUR P, et al. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields[J]. J Magn Reson, 2016, 265: 188-196.
doi: 10.1016/j.jmr.2016.02.007 pmid: 26923151 |
[11] |
SMITH G M, LESURF J C G, MITCHELL R H, et al. Quasi-optical cw mm-wave electron spin resonance spectrometer[J]. Rev Sci Instrum, 1998, 69(11): 3924-3937.
doi: 10.1063/1.1149200 |
[12] | SMITH G M, ROBERTSON D A, BOLTON D R, et al. Instrumentation for high sensitivity, high power, millimetre wave, electron paramagnetic resonance[C]// IET Colloquium on Millimetre-Wave and Terahertz Engineering & Technology, London, UK: IET, 2016: 1-5. |
[13] |
BLANK A, TWIG Y, ISHAY Y. Recent trends in high spin sensitivity magnetic resonance[J]. J Magn Reson, 2017, 280: 20-29.
doi: S1090-7807(17)30058-7 pmid: 28545918 |
[14] |
MORTON J J L, BERTET P. Storing quantum information in spins and high-sensitivity ESR[J]. J Magn Reson, 2018, 287: 128-139.
doi: S1090-7807(17)30289-6 pmid: 29413326 |
[15] |
YAMAUCHI S, TAKAHASHI K, ISLAM S S M, et al. Time-resolved high-frequency EPR studies on magnesium and zinc tetraphenylporphines in their lowest excited triplet states[J]. J Phys Chem B, 2010, 114(45): 14559-14563.
doi: 10.1021/jp1023197 |
[16] |
HOFBAUER W, EARLE K A, DUNNAM C R, et al. High-power 95 GHz pulsed electron spin resonance spectrometer[J]. Rev Sci Instrum, 2004, 75(5): 1194-1208.
doi: 10.1063/1.1710700 |
[17] |
CRUICKSHANK P A, BOLTON D R, ROBERTSON D A, et al. A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time[J]. Rev Sci Instrum, 2009, 80(10): 103102.
doi: 10.1063/1.3239402 |
[18] | 任明伟. 宽带电子顺磁共振谱仪的设计与实现[D]. 合肥: 中国科学技术大学, 2018. |
[19] |
EARLE K A, DZIKOVSKI B, HOFBAUER W, et al. High-frequency ESR at ACERT[J]. Magn Reson Chem, 2005, 43: S256-S266.
doi: 10.1002/(ISSN)1097-458X |
[20] |
BORBAT P P, COSTA-FILHO A J, EARLE K A, et al. Electron spin resonance in studies of membranes and proteins[J]. Science, 2001, 291(5502): 266-269.
doi: 10.1126/science.291.5502.266 pmid: 11253218 |
[21] |
FREED J H. New technologies in electron spin resonance[J]. Ann Rev Phys Chem, 2000, 51: 655-689.
doi: 10.1146/physchem.2000.51.issue-1 |
[22] | 王皓. 电子顺磁共振谱仪中基于相频关系的自动频率控制系统的设计[D]. 合肥: 中国科学技术大学, 2017. |
[23] |
JESCHKE G. Quo vadis EPR?[J]. J Magn Reson, 2019, 306: 36-41.
doi: S1090-7807(19)30133-8 pmid: 31345773 |
[24] | PRISNER T F. Pulsed high-frequency/high-field EPR[J]. Advances in Magnetic and Optical Resonance, 1997, 20: 245-299. |
[25] | SUSHIL K. MISRA. Multifrequency Electron Paramagnetic Resonance[M]. Germany: Deutsche Nationalbibliothek, 2011. |
[26] |
TELSER J, KRZYSTEK J, OZAROWSKI A. High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry[J]. J Biol Inorg Chem, 2014, 19(3): 297-318.
doi: 10.1007/s00775-013-1084-3 pmid: 24477944 |
[27] |
REIJERSE E J. High-frequency EPR instrumentation[J]. Appl Magn Reson, 2010, 37(1-4): 795-818.
doi: 10.1007/s00723-009-0070-y |
[28] |
MULLER F, HOPKINS M A, CORON N, et al. A high magnetic field EPR spectrometer[J]. Rev Sci Instrum, 1989, 60(12): 3681-3684.
doi: 10.1063/1.1140474 |
[29] |
PRISNER T F, ROHRER M, MOBIUS K. Pulsed 95 GHz high-field EPR heterodyne spectrometer with high spectral and time resolution[J]. Appl Magn Reson, 1994, 7(2-3): 167-183.
doi: 10.1007/BF03162610 |
[30] |
FUCHS M R, PRISNER T F, MOBIUS K. A high-field/high-frequency heterodyne induction-mode electron paramagnetic resonance spectrometer operating at 360 GHz[J]. Rev Sci Instrum, 1999, 70(9): 3681-3683.
doi: 10.1063/1.1149977 |
[31] |
SCHMALBEIN D, MARESCH G G, KAMLOWSKI A, et al. The Bruker high-frequency-EPR system[J]. Appl Magn Reson, 1999, 16(2): 185-205.
doi: 10.1007/BF03161933 |
[32] |
SMITH G M, LESURF J C G, MITCHELL R H, et al. Quasi-optical cw mm-wave electron spin resonance spectrometer[J]. Rev Sci Instrum, 1998, 69(11): 3924-3937.
doi: 10.1063/1.1149200 |
[33] |
HASSAN A K, PARDI L A, KRZYSTEK J, et al. Ultrawide band multifrequency high-field EMR technique: A methodology for increasing spectroscopic information[J]. J Magn Reson, 2000, 142(2): 300-312.
pmid: 10648147 |
[34] |
EATON G R, EATON S S. High-field and high-frequency EPR[J]. Appl Magn Reson, 1999, 16(2): 161-166.
doi: 10.1007/BF03161931 |
[35] |
BLOK H, DISSELHORST J, ORLINSKII S B, et al. A continuous-wave and pulsed electron spin resonance spectrometer operating at 275 GHz[J]. Journal of Magnetic Resonance, 2004, 166(1): 92-99.
pmid: 14675824 |
[36] | LU J F, LIU Y. Review on the development of electron paramagnetic resonance (EPR) in China in 50 years[J]. Chinese J Magn Reson, 2011, 28(04): 564-572. |
卢景雰, 刘扬. 中国电子顺磁共振(EPR)发展50年回顾[J]. 波谱学杂志, 2011, 28(04): 564-572. | |
[37] |
CHO F H, STEPANOV V, ABEYWARDANA C, et al. 230/115 GHz electron paramagnetic resonance/double electron-electron resonance spectroscopy[J]. Methods Enzymol, 2015, 563: 95-118.
doi: 10.1016/bs.mie.2015.07.001 pmid: 26478483 |
[38] | WANG S L, LI L, OUYANG Z W, et al. Development of high frequency electron spin resonance device with pulsed high magnetic field[J]. Acta Physica Sinica, 2012, 61(10): 405-409. |
王绍良, 李亮, 欧阳钟文, 等. 脉冲强磁场高频电子自旋共振装置的研制[J]. 物理学报, 2012, 61(10): 405-409. | |
[39] |
GABBASOV B, GAFUROV M, STARSHOVA A, et al. Conventional, pulsed and high-field electron paramagnetic resonance for studying metal impurities in calcium phosphates of biogenic and synthetic origins[J]. J Magn Magn Mater, 2019, 470: 109-117.
doi: 10.1016/j.jmmm.2018.02.039 |
[40] |
HARRABI R, HALBRITTER T, AUSSENAC F, et al. Highly efficient polarizing agents for MAS-DNP of proton-dense molecular solids[J]. Angew Chem Int Ed, 2022, 61(12): 1-9.
doi: 10.1002/(ISSN)1521-3757 |
[41] |
SWAPNALIN J, KUMAR N S, NAIDU K C B, et al. Recent developments in electron paramagnetic resonance for spectroscopic applications[J]. Biointerface Res Appl Chem, 2023, 13(1): 45.
doi: 10.33263/BRIAC |
[42] | UBBINK M, WORRALL J A R, CANTERS G W, et al. Paramagnetic resonance of biological metal centers[J]. Ann Rev Bioph Biom, 2002, 31: 393-422. |
[43] |
FITTIPALDI M, STEINER R A, MATSUSHITA M, et al. Single-crystal EPR study at 95 GHz of the type 2 copper site of the inhibitor-bound quercetin 2,3-dioxygenase[J]. Biophys J, 2003, 85(6): 4047-4054.
pmid: 14645093 |
[44] |
BARRA A L, HASSAN A K, JANOSCHKA A, et al. Broad-band quasi-optical HF-EPR spectroscopy: application to the study of the ferrous iron center from a rubredoxin mutant[J]. Appl Magn Reson, 2006, 30(3-4): 385-397.
doi: 10.1007/BF03166208 |
[45] |
DAVIS I, KOTO T, TERRELL J R, et al. High-frequency/high-field electron paramagnetic resonance and theoretical studies of tryptophan-based radicals[J]. J Phys Chem A, 2018, 122(12): 3170-3176.
doi: 10.1021/acs.jpca.7b12434 pmid: 29488750 |
[46] |
DAVIES M J. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods[J]. Methods, 2016, 109: 21-30.
doi: S1046-2023(16)30143-8 pmid: 27211009 |
[47] | BRACCI M, BRUZZESE P C, FAMULARI A, et al. Paramagnetic species in catalysis research: a unified approach towards(the role of EPR in) heterogeneous, homogeneous and enzyme catalysis[M]. Britain: The Royal Society of Chemistry, 2020. |
[48] | PENG Z L, DALLAS J, TAKAHASHI S. Reduction of surface spin-induced electron spin relaxations in nanodiamonds[J]. J Appl Phys, 2020, 128(5): 1-8. |
[49] | JACKSON C E, LIN C Y, VAN TOL J, et al. Orientation dependence of phase memory relaxation in the V(IV) ion at high frequencies[J]. Chemical Physics Letters, 2020, 739: 1-5. |
[50] |
EDINACH E V, USPENSKAYA Y A, GURIN A S, et al. Application of high-frequency electron paramagnetic resonance/electron spin echo for the identification of the impurity composition and electronic structure of ceramics based garnets[J]. Phys Solid State, 2019, 61(10): 1820-1828.
doi: 10.1134/S1063783419100135 |
[51] | SAIZ C L, DELGADO J A, VAN TOL J, et al. 2D correlations in the van der Waals ferromagnet CrBr3 using high frequency electron spin resonance spectroscopy[J]. J Appl Phys, 2021, 129(23): 1-7. |
[52] |
KUMAR P, SANTALUCIA D J, KANIEWSKA-LASKOWSKA K, et al. Probing the magnetic anisotropy of Co(II) complexes featuring redox-active ligands[J]. Inorg Chem, 2020, 59(22): 16178-16193.
doi: 10.1021/acs.inorgchem.0c01812 pmid: 33141572 |
[53] |
MURATOVIC S, KARADENIZ B, STOLAR T, et al. Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(ii)-MOF-74[J]. J Mater Chem C, 2020, 8(21): 7132-7142.
doi: 10.1039/D0TC00844C |
[54] |
PAULIN J V, BATAGIN-NETO A, NAYDENOV B, et al. High-field/high-frequency EPR spectroscopy on synthetic melanin: on the origin of carbon-centered radicals[J]. Materials Advances, 2021, 2(19): 6297-6305.
doi: 10.1039/D1MA00446H |
[55] | LI J X, TONG W. Graphic user interface design of EPR spectrum simulation software EasySpin[J]. Chinese J Magn Reson, 2023, 30(1): 100-110. |
李晶鑫, 童伟. EPR谱图模拟软件EasySpin的图形用户界面设计[J]. 波谱学杂志, 2023, 30(1): 100-110. | |
[56] | GAFUROV M R, PONOMAREV A A, MAMIN G V, et al. Application of pulsed and high-frequency electron paramagnetic resonance techniques to study petroleum disperse systems[J]. Georesursy, 2020, 22(4): 2-14. |
[1] | Yu HE,Zhi-fu SHI,Xin-Xing ZHAO,Tao SU,Ji-hu SU. Design and Performance of a New Multifunction X-band EPR Spectrometer [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 1-10. |
[2] | Xing HUANG,Zi-li ZHANG,Xin-ning HU,Fei-fei NIU,Wan-shuo SUN,Xiang-dong KONG,Yin-ming DAI. Research Progresses Concerning the Superconducting Joints Used in Nuclear Magnetic Resonance Magnets [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 424-432. |
[3] | ZHOU Zi-fa, CHEN Fu, ZHANG Hua-ming. A Theoretical Study of the EPR Spectra and Local Structures of Cu2+ Center in Cu1-xHxZr2(PO4)3 [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 399-406. |
[4] | ZHAN Jia-ying, TU Zhang-ren, DU Xiao-feng, YUAN Bin, GUO Di, QU Xiao-bo. Progresses on Low-Rank Reconstruction for Non-Uniformly Sampled NMR Spectra [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 255-272. |
[5] | LIN Ze-yu, HUO Hua, WANG Qi-hang. Progress in Solid-State NMR Studies of Monoclinic Lithium Vanadium Phosphate [J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 16-27. |
[6] | LIN Xiao-qing, LI Hong, ZHAN Hao-lin, DU Shi-jia, HUANG Yu-qing, CHEN Zhong. High-Resolution Pure Shift NMR Spectroscopy and Its Applications [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 425-436. |
[7] | XU Xiao-jun, WANG Shen-lin. Probing Membrane Protein Interactions by 19F Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 238-251. |
[8] | CHEN Li, TAN Xiao-li, ANTAL Rockenbauer, WANG Run-ling, LIU Yang-ping. Efficient Synthesis and Characterization of PEGylated/Deuterated Derivatives of Monophosphonated Tetrathiatriarylmethyl Radicals [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 208-218. |
[9] | GE Yu-wei, LIU Mai-li, GAN Zhe-hong, LI Cong-gang. Measurements of Proton Chemical Shift Anisotropy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 255-267. |
[10] | FAN Kai, GUO Jun-wang, ZOU Jie-rui, CONG Jian-bo, MA Lei, DONG Guo-fu, WU Ke. An EPR Modulation Magnetic Field Driving Device for in Vivo Tooth Dosimetry [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 365-371. |
[11] | LIU Zao, ZHU Tian-xiong, HE Yu-gui, CHEN Jun-fei, FENG Ji-wen, LIU Chao-yang. Microwave Bridge in a DNP-EPR Multifunctional Spectrometer:Design and Implementation [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 357-364. |
[12] | YANG Xian-peng, YU Hao-jie, WANG Li. Recent Progresses in ESR Studies on Ferrocenyl Compounds [J]. Chinese Journal of Magnetic Resonance, 2016, 33(3): 491-501. |
[13] | ZHANG Yi, LIU Yi, MENG Da-Li, LI Xian. Spectral Characteristics of Cyclic Diarylheptanoids [J]. Chinese Journal of Magnetic Resonance, 2010, 27(4): 669-677. |
[14] | GOU Qian; XIA Zhi-ning; TANG Shou-yuan. Intermolecular Interactions Studied by Microwave Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2009, 26(3): 413-423. |
[15] |
DENG Yi-bin;JI Dan;ZHOU Ping*.
Application of Magnetic Resonance Methods in the Structural and Functional Characterization of Silk Fibroin [J]. Chinese Journal of Magnetic Resonance, 2008, 25(4): 555-571. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||