[1] TAOUFIK I, HADDAD M, BROCHU R, et al. Location of Cu2+ ions in some protoned Nasicon-type phosphates[J]. J Mater Sci, 1999, 34(12):2943-2947. [2] SAVINYKH D O, KHAINAKOV S A, ORLOVA A I, et al. Preparation and thermal expansion of calcium iron zirconium phosphates with the NaZr2(PO4)3 structure[J]. Inorg Mater, 2018, 54(6):591-595. [3] TAOUFIK I, HADDAD M, NADIRI A, et al. X and Q band EPR studies of Cu0.5Zr2(PO4)3 phosphates[J]. J Phys Chem Solids, 1999, 60(5):701-707. [4] WEI W H, HOU C J, LU M, et al. Theoretical explanation of the anisotropic g factors for Cu2+center in Cu0.5Zr2(PO4)3 crystal[J]. J Shandong Univ, 2012, 7:26-29. 魏望和, 侯春菊, 卢敏, 等Cu0.5Zr2(PO4)3中Cu2+离子中心各向异性g因子研究[J]. 山东大学学报, 2012, 7:26-29. [5] ZHOU P F, YUAN H, XU X N, et al. Effects of doping F and transition metal on crystal structure and properties of ZnO thin film[J]. Acta Phys Sin, 2015, 64(24):247503. 周攀钒, 袁欢, 徐小楠, 等. 过渡金属与F共掺杂ZnO薄膜结构及磁、光特性[J]. 物理学报, 2015, 64(24):247503. [6] AMARA A, GACEM L, GUEDDIM A, et al. Luminescence properties of Cr3+ ions in Na2ZnP2O7 crystal[J]. Physica B, 2018, 545:408-412. [7] ABRAHAM A G, MANIKANDAN A, MANIKANDAN E, et al. Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites[J]. J Magn Magn Mater, 2018, 452:380-388. [8] LI C Y, FU J X, DONG M, et al. Theoretical investigation of the electron paramagnetic resonance parameters and local structures for DHMS:Cu2+[J]. J Univ Electron Sci Technol China, 2016, 45(3):361-364. 李超英, 付金仙, 董明, 等. DHMS中掺杂Cu2+电子顺磁共振参量及局部结构[J]. 电子科技大学学报, 2016, 45(3):361-364. [9] HUANG Y, DU M L, NI C, et al. The D2h distortion around the Cu2+ center in Cu0.5Zr2(PO4)3 single crystal[J]. Z Naturforschung A, 2005, 60:193-195. [10] ZHANG H M. Theoretical investigation of the EPR spectra and local structures for PHZS:Cu2+[J]. J Univ Electron Sci Technol China, 2018, 47(5):128-131. 张华明. PHZS:Cu2+的EPR谱和局部结构研究[J]. 电子科技大学学报, 2018, 47(5):128-131. [11] ZHANG H M. Studies on EPR parameters and local structures for the rhombic Cu2+ center in the ZnGeO4·6H2O crystal[J]. Russ J Phys Chem A, 2018, 92:2733-2738. [12] BIYIK R, TAPRAMAZ R, YESILEL O Z. EPR spectra of Cu2+ doped[Zn(sac)2(dmen)] and[Zn(sac)2(paen)] single crystals[J]. Spectrochim Acta A, 2007, 68:394-398. [13] ZHANG H M, XIAO W B, WAN X. Theoretical studies of the local structures and electron paramagnetic resonance parameters for Cu2+ center in Zn(C3H3O4)2(H2O)2 single crystal[J]. Radiat Eff Def Solids, 2014, 169:603-609. [14] DONG H N, WU S Y, LI P. Theoretical explanation of EPR parameters for Cu2+ ion in TiO2 crystal[J]. Phys Status Solidi B, 2004, 241:1935-1938. [15] ZHANG H M, XIAO W B. Investigations on the EPR parameters and defect structures due to Jahn-Teller effect for the Cu2+ and Ni+ centers in LiNbO3[J]. J Alloy Compod, 2018, 745:586-591. [16] LI C Y, ZHENG X M, HE J. Theoretical studies on the local structure and electron paramagnetic resonance parameters for Cu2+ centers in TiO2 with one oxygen vacancy adjacent[J]. Z Naturforsch A, 2013, 68:605-609. [17] KUANG M Q, WU S Y, ZHANG H M. Theoretical studies on the local structure and spin Hamiltonian parameters for the orthorhombic Cu2+ center in LiNbO3[J]. Optik, 2012, 123:1601-1604. [18] MCGARVEY B R, The isotropic hyperfine interaction[J]. J Phys Chem, 1967, 71:51-66. [19] GRIFFITH J S. The theory of transition-metal Ions[M]. London:Cambridge University Press, 1964. [20] HODGSON E K, FRIDOVICH I. Reversal of the superoxide dismutase reaction[J]. Biochem Bioph Res Co, 1973, 54, 270-274. [21] WU S Y, GAO X Y, DONG H N. Investigations on the angular distortions around V2+ in CsMgX3 (X=Cl, Br, I)[J]. J Magn Magn Mater, 2006, 301:67-73. [22] WEI Q, YANG Z Y. EPR parameters of Cr3+:MgAl2O4 crystal and its hyperfine electronic spectra[J]. Chinese J Magn Reson, 2004, 21(1):25-32. 魏群, 杨子元. Cr3+:MgAl2O4晶体EPR参量及其电子精细光谱的研究[J]. 波谱学杂志, 2004, 21(1):25-32. [23] CLEMENTI E, RAIMONDI D L. Atomic screening constants from SCF functions[J]. J Chem Phys, 1963, 38: 2686-2689. [24] CLEMENTI E, RAIMONDI D L, REINHARDT W P. Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons[J]. J Chem Phys, 1967, 47:1300-1307. [25] NEWMAN D J, NG B. The superposition model of crystal fields[J]. Rep Prog Phys, 1989, 52:699-762. [26] DING C C, WU S Y, ZHU Q S, et al. Theory studies of the local lattice distortions and the EPR parameters for Cu2+, Mn2+ and Fe3+ centres in ZnWO4[J]. Mol Phys, 2015, 113:1478-1484. [27] LIU X S, WU S Y, ZHONG S Y, et al. Theoretical studies of the defect structures and spin Hamiltonian parameters for manganese(II) and nickel(II) doped Zn(en)3(NO3)2 single crystals[J]. Philos Magn, 2019, 99:770-788. [28] BUSSEREAU I, OLAZCUAGA R, FLEM G. L, et al. Synthesis and properties of a new variety of Cu0.5IIZr2 (PO4)3 obtained by a sol-gel technique[J]. Eur J Solid State Inorg Chem, 1989, 26, 383-399. [29] JØRGENSEN C K. Absorption spectra and chemical bonding in complexes[M]. Oxford:Pergamon Press, 1962. [30] ABRAGAM A, BLEANEY B. Electron paramagnetic resonance of transition ions[M]. Oxford:Clarendon Press, 1970. |