[1] CASINO P, RUBIO V, MARINA A. The mechanism of signal transduction by two-component systems[J]. Curr Opin Struct Biol, 2010, 20(6):763-771.[2] MOTALEB M A, MILLER M R, LI C H, et al. Phosphorylation assays of chemotaxis two-component system proteins in <i>Borrelia burgdorferi</i>[J]. Methods Enzymol, 2007, 422:438-447.[3] TRAN L S P, SHINOZAKI K, YAMAGUCHI SHINOZAKI K. Role of cytokinin responsive two-component system in ABA and osmotic stress signalings[J]. Plant Signal Behav, 2010, 5(2):148-150.[4] CHEUNG J K, WISNIEWSKI J A, ADAMS V M, et al. Analysis of the virulence-associated RevSR two-component signal transduction system of Clostridium perfringens[J]. Int J Med Microbiol, 2016, 306(6):429-442.[5] LEUTHNER B, HEIDER J. A two-component system involved in regulation of anaerobic toluene metabolism in <i>Thauera aromatica</i>[J]. FEMS Microbiol Lett, 1998, 166(1):35-41.[6] GOTOH Y, EGUCHI Y, WATANABE T, et al. Two-component signal transduction as potential drug targets in pathogenic bacteria[J]. Curr Opin Microbiol, 2010, 13(2):232-239.[7] WANG S S. Bacterial two-component systems:Structures and signaling mechanisms[M]//HUANG C. Protein phosphorylation in human health. USA:InTech, 2012.[8] HWANG I, CHEN H C, SHEEN J. Two-component signal transduction pathways in Arabidopsis[J]. Plant Physiol, 2002, 129(2):500-515.[9] CHEUNG J, LE-KHAC M, HENDRICKSON W A. Crystal structure of a histidine kinase sensor domain with similarity to periplasmic binding proteins[J]. Proteins, 2009, 77(1):235-241.[10] KISHⅡ R, FALZON L, YOSHIDA T, et al. Structural and functional studies of the HAMP domain of EnvZ, an osmosensing transmembrane histidine kinase in <i>Escherichia coli</i>[J]. J Biol Chem, 2007, 282:26401-26408.[11] DUTTA R, QIN L, INOUYE M. Histidine kinases:diversity of domain organization[J]. Mol Microbiol, 1999, 34(4):633-640.[12] BOURRET R B. Receiver domain structure and function in response regulator proteins[J]. Curr Opin Microbiol, 2010, 13(2):142-149.[13] CAPRA E J, LAUB M T. Evolution of two-component signal transduction systems[J]. Annu Rev Microbiol, 2012, 66(1):325-347.[14] OCASIO V J, CORREA F, GARDNER K H. Ligand-induced folding of a two-component signaling receiver domain[J]. Biochemistry, 2015, 54(6):1353-1363.[15] SCHNELL R, ÅGREN D, SCHNEIDER G. 1.9 Å structure of the signal receiver domain of the putative response regulator NarL from <i>Mycobacterium tuberculosis</i>[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2008, 64(Pt 12):1096-1100.[16] VALVERDE C, HAAS D. Small RNAs controlled by two-component systems[J]. Adv Exp Med Biol, 2008, 631(6):54-79.[17] LAGURI C, PHILLIP-SJONES M K, WILLIAMSON M P. Solution structure and DNA binding of the effector domain from the global regulator PrrA (RegA) from <i>Rhodobacter sphaeroides</i>:insights into DNA binding specificity[J]. Nucleic Acids Res, 2004, 31(23):6778-6787.[18] CASINO P, RUBIO V, MARINA A. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell, 2009, 139(2):325-336.[19] BANERJEE R, YAN H, CUKIER R I. Conformational transition of response regulator RR468 in a two-component system signal transduction process[J]. J Phys Chem B, 2014, 118(18):4727-4742.[20] BANERJEE R, YAN H, CUKIER R I. Conformational transition in signal transduction:Metastable states and transition pathways in the activation of a signaling protein[J]. J Phys Chem B, 2015, 119(22):6591-6602.[21] BIRCK C, MOUREY L, GOUET P, et al. Conformational changes induced by phosphorylation of the FixJ receiver domain[J]. Structure, 1999, 7(7):1505-1515.[22] THOMAS S A, BREWSTER J A, BOURRET R B. Two variable active site residues modulate response regulator phosphoryl group stability[J]. Mol Microbiol, 2008, 69(2):453-465.[23] PAGE S C, IMMORMINO R M, MILLER T H, et al. Experimental analysis of functional variation within protein families:receiver domain autodephosphorylation kinetics[J]. J Bacteriol, 2016, 198(18):2483-2493.[24] THOMAS S A, IMMORMINO R M, BOURRET R B, et al. Nonconserved active site residues modulate CheY autophosphorylation kinetics and phosphodonor preference[J]. Biochemistry, 2013, 52(13):2262-2273.[25] IMMORMINO R M, STARBIRD C A, SILVERSMITH R E, et al. Probing mechanistic similarities between response regulator signaling proteins and haloacid dehalogenase phosphatases[J]. Biochemistry, 2015, 54(22):3514-3527.[26] CASINO P, FERNANDEZ-ALVAREZ A, ALFONSO C, et al. Identification of a novel two component system in Thermotoga maritima. Complex stoichiometry and crystallization[J]. Biochim Biophys Acta, 2007, 1774(5):603-609.[27] DEHNER A, FURRER J, RICHTER K, et al. NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADP, AMP-PNP, geldanamycin, and radicicol[J]. Chembiochem, 2003, 4(9):870-877.[28] MCDONALD L R, BOYER J A, LEE A L. Segmental motions, not a two-state concerted switch, underlie allostery in CheY[J]. Structure, 2012, 20(8):1363-1373.[29] SAINZ G, TRICOT C, FORAY M F, et al. Kinetic studies of allosteric catabolic ornithine carbamoyltransferase from <i>Pseudomonas aeruginosa</i>[J]. Eur J Biochem, 1998, 251(1,2):528-533.[30] FARMER B T, CONSTANTINE K L, GOLDFARB V, et al. Localizing the NADP+ binding site on the MurB enzyme by NMR[J]. Nat Struct Biol, 1996, 3(12):995-997.[31] LIU Y X, MAO X A, LIU M L, et al. Impact of magnesium(Ⅱ) on beryllium fluorides in solutions studied by <sup>19</sup>F NMR spectroscopy[J]. Chinese J Chem, 2014, 32(9):878-882.[32] DAI C Y, ZHANG Z T, LIU M L, et al. Application of NMR in the studies of structure and interactions of <i>a</i>-synuclein[J]. Chinese J Magn Reson, 2016, 33(1):153-167. 戴晨晔, 张则婷, 刘买利, 等. NMR在<i>a</i>-synuclein的结构及相互作用研究中的应用[J]. 波谱学杂志, 2016, 33(1):153-167.[33] LONG D, LIU M L, YANG D W. Accurately probing slow motions on millisecond timescales with a robust NMR relaxation experiment[J]. J Am Chem Soc, 2008, 130(8):2432-2433.[34] BIERI M, GOOLEY P R. Automated NMR relaxation dispersion data analysis using NESSY[J]. BMC Bioinformatics, 2011, 12(1):421.[35] 刘乙祥. 细菌双组分信号转导系统蛋白质复合体结构和磷酸转移机制的研究[D]. 武汉:中国科学院武汉物理与数学研究所, 2015.[36] SHIBATA N, SATO H, SAKAKI S, et al. Theoretical study of magnesium fluoride in aqueous solution[J]. J Phys Chem B, 2011, 115(35):10553-10559.[37] HUYNH T N, NORIEGA C E, STEWART V. Missense substitutions reflecting regulatory control of transmitter phosphatase activity in two-component signalling[J]. Mol Microbiol, 2013, 88(3):459-472.[38] LIU T, LIU M L, JIANG L. Divalent metal ion binding to the response regulator YycF_N studied by NMR spectroscopy[J]. Chinese J Magn Reson, 2016, 33(1):77-88. 刘婷, 刘买利, 姜凌. 二价金属离子与YycF_N相互作用的NMR研究[J]. 波谱学杂志, 2016, 33(1):77-88.[39] ISHIMA R, TORCHIA D A. Protein dynamics from NMR[J]. Nat Struct Biol, 2000, 7(9):740-743.[40] JIANG B, YU B H, ZHANG X, et al. A (15)N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection[J]. J Magn Reson, 2015, 257:1-7. |