[1] Lauterbur P C. Image formation by induced local interactions: Examples of employing nuclear magnetic resonance[J]. Nature, 1973, 242(5 379): 190-191. [2] Edelstein W A, Glover G H, Hardy C J, et al. The intrinsic signal-to-noise ratio in NMR imaging[J]. Magn Reson Med, 1986, 3(4): 604-618. [3] Schild H. Clinical high field MR[J]. Rofo, 2005, 177: 621-631. [4] Okada T, Yamada H, Ito H, et al. Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: Measured using BOLD contrast in the primary visual area[J]. Acad Radiol, 2005, 12(2): 142-147. [5] U?urbil K, Garwood M, Ellermann J, et al. Imaging at high magnetic fields: initial experiences at 4 T [J]. Magn Reson Q, 1994, 9(4): 259-277. [6] Ibrahim T S, Lee R, Abduljalil A M, et al. Dielectric resonances and B1 field inhomogeneity in UHFMRI: computational analysis and experimental findings[J]. Magn Reson Imaging, 2001, 19(2): 219-226. [7] Hennig J. Ultra high field MR: Useful instruments or toys for the boys?[J]. Magn Reson Mater Phy, 2008, 21(1): 1-3. [8] SIEMENS: Magnetom 7 T brochure[OL]. https://www.siemens.com/7 T-MRI [9] Vaughan J T, Adriany G, Snyder C J, et al. Efficient high-frequency body coil for high-field MRI[J]. Magn Reson Med, 2004, 52(4): 851-859. [10] Nova Medical[OL]. http://www.novamedical.com.Quality Electrodynamics[OL]. http://www.qualedyn.com. [11] Adriany G, Auerbach E J, Snyder C J, et al. A 32-Channel lattice transmission line array for parallel transmit and receive MRI at 7 Tesla[J]. Magn Reson Med, 2010, 63(6): 1 478-1 485. [12] Snyder C, DelaBarre L, Moeller S, et al. Comparison between eight- and sixteen-channel TEM transceive arrays for body imaging at 7 Tesla[J]. Magn Reson Med, 2012, 67(4): 954-964. [13] Mao M, Smith M B, Collins C M. Exploring the limits of RF shimming for high-field MRI of the human head[J]. Magn Reson Med, 2006, 56(4): 918-922. [14] Collins C M, Liu W, Wang J, et al. Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz[J]. J Magn Reson Imaging, 2004, 19(5): 650-656. [15] United States Food and Drug Administration. Guidance for Industry and FDA Staff: Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices[M]. Washington DC: Food and Drug Administration, 2003. [16] Theysohn J M, Maderwald S, Kraff O, et al. Subjective acceptance of 7 Tesla MRI for human imaging[J]. Magn Reson Mater Phy, 2008, 21(1): 63-72. [17] Conijn M M, Geerlings M I, Luijten P R, et al. Visualization of cerebral microbleeds with dual-echo T2*-weighted magnetic resonance imaging at 7.0 T [J]. J Magn Reson Imaging, 2010, 32(1): 52-59. [18] Polders D L, Leemans A, Hendrikse J, et al. Signal to noise ratio and uncertainty in diffusion tensor imaging at 1.5, 3.0, and 7.0 Tesla[J]. J Magn Reson Imaging, 2011, 33(6): 1 456-1 463. [19] Grossman E J, Zhang K, An J, et al. Human brain perfusion MRI at 7 T using a segmented true FISP ASL method[J]. Proc Intl Soc Mag Reson Med, 2008, 16: 1 918. [20] Thomas B P, Welch E B, Niederhauser B D, et al. High-resolution 7 T MRI of the human hippocampus in vivo[J]. J Magn Reson Imaging, 2008, 28(5): 1 266-1 272. [21] Thürlinga M, Küpera M, Stefanescua R, et al. Activation of the dentate nucleus in a verb generation task: A 7 T MRI study[J]. NeuroImage, 2011, 57(3): 1 184-1 191. [22] Sanchez-Panchuelo R M, Francis S, Bowtell R, et al. Mapping human somatosensory cortex in individual subjects with 7 T functional MRI[J]. J Neurophysiol, 2010, 103(5): 2 544-2 556. [23] Metcalf M, Xu D, Okuda D T, et al. High-resolution phased-array MRI of the human brain at 7 Tesla: Initial experience in multiple sclerosis patients[J]. J Neuroimaging, 2010, 20(2): 141-147. [24] Kang C K, Park C A, Lee H, et al. Hypertension correlates with lenticulostriate arteries visualized by 7 T magnetic resonance angiography[J]. Hypertension, 2009, 54(5): 1 050-1 056. [25] Kerchner G A. Ultra-high field 7 T MRI: a new tool for studying Alzheimer's disease[J]. J Alzheimers Dis, 2011, 26(S3): 91-95. [26] van den Bogaard S J, Dumas E M, Teeuwisse W M, et al. Exploratory 7 Tesla magnetic resonance spectroscopy in Huntington's disease provides in vivo evidence for impaired energy metabolism[J]. J Neurol, 2011, 258(12): 2 230-2 239. [27] Henry T R, Chupin M, Lehéricy S, et al. Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 T [J]. Radiology, 2011, 261(1): 199-209. [28] Pinker K, Bogner W, Baltzer P, et al. Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T [J]. European Radiology, 2013, 24 (4): 913-920. [29] Korteweg M A, Veldhuis W B, Mali W P, et al. Investigation of lipid composition of dissected sentinel lymph nodes of breast cancer patients by 7 T proton MR spectroscopy[J]. J Magn Reson Imaging, 2012, 35(2): 387-392. [30] Ren J, Lakoski S, Haller R G, et al. Dynamic monitoring of carnitine and acetylcarnitine in the trimethylamine signal after exercise in human skeletal muscle by 7 T 1H-MRS[J]. Magn Reson Med, 2013, 69(1): 7-17. [31] Ren J, Sherry A D, Malloy C R. Noninvasive monitoring of lactate dynamics in human forearm muscle after exhaustive exercise by 1H-magnetic resonance spectroscopy at 7 Tesla[J]. Magn Reson Med, 2013, 70(3): 610-619. [32] Cho Z H, Min H K, Oh S H, et al. Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7 Tesla magnetic resonance imaging[J]. J Neurosurg, 2010, 113(3): 639-647. [33] Abosch A, Yacoub E, Ugurbil K, et al. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 Tesla[J]. Neurosurgery, 2010, 67(6): 1 745-1 756. [34] Wiggins G C, Sodickson D K. Towards clinical 7 T MRI[J]. Siemens Magnetom Flash, 2011, 1: 2-19. |