[1] Webster R G, Granoff A. Encyclopedia of Virology[M]. London: Academic Press Ltd, 1994.[2] Harrison S C. Viral membrane fusion[J]. Nat Struct Mol Biol, 2008, 15(7): 690-698.[3] Bean W, Schell M, Katz J, et al. Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts[J]. J Virol, 1992, 66(2):1 129-1 138.[4] White J, Helenius A, Gething M. Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion[J]. Nature, 1982, 300(5 893): 658-659.[5] Klenk H D, Rott R, Orlich M, et al. Activation of influenza a viruses by trypsin treatment[J]. Virology, 1975, 68(2): 426-439.[6] Huang R, Wahn K, Klenk H D, et al. Fusion between cell membrane and liposomes containing the glycoproteins of influenza virus[J]. Virology, 1980, 104(2): 294-302.[7] Huang R T, Rott R, Klenk H D. Influenza viruses cause hemolysis and fusion of cells[J]. Virology, 1981, 110(1): 243-247.[8] Skehel J J, Waterfield M D. Studies on the primary structure of the influenza virus hemagglutinin[J]. Proc Natl Acad Sci USA, 1975, 72(1): 93-97.[9] Chen J, Wharton S A, Weissenhorn W, et al. A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced conformation[J]. Proc Natl Acad Sci USA, 1995, 92(26): 12 205-12 209.[10] Stegmann T, Delfino J, Richards F, et al. The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion[J]. J Biol Chem, 1991, 266(27): 18 404-18 410.[11] Carr C M, Kim P S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin[J]. Cell, 1993, 73(4): 823-832.[12] Durrer P, Galli C, Hoenke S, et al. H+-induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region[J]. J Biol Chem, 1996, 271(23): 13 417-13 421.[13] Carr C M, Chaudhry C, Kim P S. Influenza hemagglutinin is spring-loaded by a metastable native conformation[J]. Proc Natl Acad Sci USA, 1997, 94(26): 14 306-14 313.[14] Leikina E, Mittal A, Cho M S, et al. Influenza hemagglutinins outside of the contact zone are necessary for fusion pore expansion[J]. J Biol Chem, 2004, 279(25): 26 526-26 532.[15] Blumenthal R, Sarkar D P, Durell S, et al. Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events[J]. J Cell Biol, 1996, 135(1): 63-71.[16] Floyd D L, Ragains J R, Skehel J J, et al. Single-particle kinetics of influenza virus membrane fusion[J]. Proc Natl Acad Sci USA, 2008, 105(40):15 382-15 387.[17] Harter C, James P, Bächi T, et al. Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the “fusion peptide”[J]. J Biol Chem, 1989, 264(11): 6 459-6 464.[18] Lear J D, DeGrado W F. Membrane binding and conformational properties of peptides representing the NH2 terminus influenza HA-2[J]. J Biol Chem, 1987, 262(14): 6 500-6 505.[19] Qiao H, Armstrong R T, Melikyan G B, et al. A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype[J]. Mol Biol Cell, 1999, 10(8): 2 759-2 769.[20] Gething M J, Doms R W, York D, et al. Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus[J]. J Cell Biol, 1986, 102(1): 11-23.[21] Steinhauer D A, Wharton S A, Skehel J J, et al. Studies of the membrane fusion activities of fusion peptide mutants of influenza virus hemagglutinin[J]. J Virol, 1995, 69(11): 6 643-6 651.[22] Cross K J, Wharton S A, Skehel J J, et al. Studies on influenza haemagglutinin fusion peptide mutants generated by reverse genetics[J]. EMBO J, 2001, 20(16): 4 432-4 442.[23] Cross K J, Langley W A, Russell R J, et al. Composition and functions of the influenza fusion peptide[J]. Protein Peptide Lett, 2009, 16(7): 766-778.[24] Chen J, Skehel J J, Wiley D C. N-and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA2 subunit to form an N cap that terminates the triple-stranded coiled coil[J]. Proc Natl Acad Sci USA, 1999, 96(16): 8 967-8 972.[25] Lorieau J L, Louis J M, Schwieters C D, et al. pH-triggered, activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR[J]. Proc Natl Acad Sci USA, 2012, 109(49): 19 994-19 999.[26] Han X, Tamm L K. A host–guest system to study structure–function relationships of membrane fusion peptides[J]. Proc Natl Acad Sci USA, 2000, 97(24): 13 097-13 102.[27] Russ W P, Engelman D M. The GxxxG motif: a framework for transmembrane helix-helix association[J]. J Mol Biol, 2000, 296(3): 911-919.[28] Kleiger G, Grothe R, Mallick P, et al. GXXXG and AXXXA: common -helical interaction motifs in proteins, particularly in extremophiles[J]. Biochemistry, 2002, 41(19): 5 990-5 997.[29] Chang D, Cheng S, Yang S. The amino-terminal region of the fusion peptide of influenza virus hemagglutinin HA2 inserts into sodium dodecyl sulfate micelle with residues 16-18 at the aqueous boundary at acidic pH. Oligomerization and the conformational flexibility[J]. J Biol Chem, 2000, 275(25): 19 150-19 158.[30] DubovskII P V, Li H, Takahashi S, et al. Structure of an analog of fusion peptide from hemagglutinin[J]. Protein Sci, 2000, 9(4): 786-798.[31] Altenbach C, Greenhalgh D A, Khorana H G, et al. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin[J]. Proc Natl Acad Sci USA, 1994, 91(5): 1 667-1 671.[32] Han X, Bushweller J H, Cafiso D S, et al. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin[J]. Nat Struct Mol Biol, 2001, 8(8): 715-720.[33] Hsu C H, Wu S H, Chang D K, et al. Structural characterizations of fusion peptide analogs of influenza virus hemagglutinin Implication of the necessity of a helix-hinge-helix motif in fusion activity[J]. J Biol Chem, 2002, 277(25): 22 725-22 733.[34] Li Y, Han X, Lai A L, et al. Membrane structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking mutant G1V of influenza virus hemagglutinin suggest a mechanism for pore opening in membrane fusion[J]. J Virol, 2005, 79(18): 12 065-12 076.[35] Lai A L, Park H, White J M, et al. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity[J]. J Biol Chem, 2006, 281(9): 5 760-5 770.[36] Lai A L, Tamm L K. Locking the kink in the influenza hemagglutinin fusion domain structure[J]. J Biol Chem, 2007, 282(33): 23 946-23 956.[37] Tamm L K, Lai A L, Li Y. Combined NMR and EPR spectroscopy to determine structures of viral fusion domains in membranes[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2007, 1 768(12): 3 052-3 060.[38] Lai A L, Tamm L K. Shallow boomerang-shaped influenza hemagglutinin G13A mutant structure promotes leaky membrane fusion[J]. J Biol Chem, 2010, 285(48): 37 467-37 475.[39] Tamm L K. Hypothesis: spring-loaded boomerang mechanism of influenza hemagglutinin-mediated membrane fusion[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2003, 1614(1): 14-23.[40] Ge M, Freed J H. Fusion peptide from influenza hemagglutinin increases membrane surface order: an electron-spin resonance study[J]. Biophys J, 2009, 96(12): 4 925-4 934.[41] Lorieau J L, Louis J M, Bax A. The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid: water interface[J]. Proc Natl Acad Sci USA, 2010, 107(25): 11 341-11 346.[42] Ghosh U, Xie L, Weliky D P. Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone 13CO-15N rotational-echo double-resonance solid-state NMR[J]. J Biomol NMR, 2013, 55(2): 139-146.[43] Lorieau J L, Louis J M, Bax A. Helical hairpin structure of influenza hemagglutinin fusion peptide stabilized by chargedipole interactions between the N-terminal amino group and the second helix[J]. J Am Chem Soc, 2011, 133(9): 2 824-2 827.[44] Hu Yun-fei(胡蕴菲), Jin Chang-wen(金长文).NMR studies of protein structures and dynamics(蛋白质溶液结构及动力学的核磁共振研究)[J]. Chinese J Magn Reson(波谱学杂志), 2009, 26(2): 151-172.[45] Lorieau J L, Louis J M, Bax A. Whole-body rocking motion of a fusion peptide in lipid bilayers from size-dispersed 15N NMR relaxation[J]. J Am Chem Soc, 2011, 133(36): 14 184-14 187.[46] Lin Dong-hai(林东海), Liu Xue-hui(刘雪辉). Residual dipolar couplings and their applications in determination of protein structures(残留偶极耦合及其在蛋白质结构研究中的应用)[J]. Chinese J Magn Reson(波谱学杂志), 2005, 22(1): 85-98.[47] Lorieau J L, Louis J M, Bax A. The impact of influenza hemagglutinin fusion peptide length and viral subtype on its structure and dynamics[J]. Biopolymers, 2013, 99(3): 189-195.[48] Du T P, Jiang L, Liu M L. NMR structures of fusion peptide from influenza hemagglutinin H3-subtype and its mutants[J]. Journal of Peptide Science, 2014, 20(4): 292-297. |