固体核磁共振技术是研究固态高分子材料中结构和分子动力学的一种非常重要和有效的手段. 该技术的一个重要特点是可以通过合理的实验方法,实现对研究体系中从低频(Hz)到中频(kHz)乃至高频(MHz)范围内分子运动的观测. 因此,固体核磁共振技术非常适合研究高分子体系中各类不同尺度分子运动. 该文首先简要介绍核磁共振研究分子运动的基本原理和方法,以及固态高分子体系的结构和分子动力学特点,然后结合固态高分子体系中的一些例子对核磁共振在固态高分子多尺度分子运动方面的一些研究成果展开讨论.
基于片段的药物筛选与设计在过去10年开始出现并获得了重要的应用,数十种基于片段的药物已经进入临床测试期. 源于靶标蛋白和小分子片段本质上的弱相互作用,现代核磁技术在其中发挥着无可替代的作用. 该文简略介绍了核磁片段筛选的基本流程和重要概念,包括靶标蛋白的选择、片段库的设计、质量控制和重要的核磁筛选技术. 在后续的基于片段的先导化合物发现阶段,阐述了核磁新技术的基本理论框架,包括化学位移扰动、分子间NOE、残留偶极耦合和顺磁标记等方法,以及这些新技术在靶标/配基复合体结构研究中的实际应用,穿插演示了片段组装的基本思路和成功案例.
蛋白质-蛋白质相互作用在多种细胞内生理活动中发挥关键性作用,而蛋白质复合物结构信息的获得主要依赖于X-射线衍射技术和核磁共振技术2种主要技术手段的使用. 需要指出的是,虽然大部分蛋白质复合物的结构解析使用了X-射线衍射技术,然而在包括无法获得蛋白质复合物晶体、 蛋白质与蛋白质结合强度较弱以及蛋白质复合物系统具有复杂的动力学行为等几种情况下,核磁共振技术是可用于蛋白质复合物结构测定的唯一手段. 用于蛋白质-蛋白质相互作用研究的NMR技术主要有化学位移扰动分析、分子间NOE的检测、顺磁弛豫增强技术、残余偶极耦合检测技术等几种. 该文将结合这几种技术在泛素-蛋白水解酶体通路领域的应用实例对它们的工作原理以及可提供的信息做出总结介绍.
润湿性是反映储层中油水分布状况的一个重要表征参数,因此研究储层岩石的润湿性对原油开采有着重要的意义. 扩散弛豫二维谱可展示扩散系数与弛豫时间的相关性,并可以对油水的弛豫时间、扩散系数分别进行研究,与核磁共振一维弛豫谱相比极大地提高了区分油水的能力. 该文首先通过多组实验验证扩散-弛豫二维谱可以很好地观测到油水共存状态下玻璃珠表面的润湿性,继而通过对3组人造岩心表面润湿性的测量,获得了人造岩心表面润湿性的信息,解决了此时单独用一维弛豫谱方法难以区分油水的问题. 利用二维谱观察岩石润湿性的研究对油田提高采收率的研究有较大的参考价值.
核磁共振(NMR)测井仪以CPMG脉冲序列为测量基础,按照CPMG脉冲序列的时序要求完成大功率射频脉冲的发射和微弱回波信号的接收, 在脉冲发射完成后快速泄放天线中储存的能量. 该文介绍一种基于现场可编程门阵列(FPGA)的NMR测井仪控制逻辑和典型脉冲序列,详细说明在CPMG脉冲序列下FPGA的工作时序和流程;讨论NMR测井仪发射电路、Q-转换电路和隔离电路的控制原理和时序要求,给出各电路的控制逻辑仿真结果;最后,利用所设计的控制逻辑和自制NMR测井仪探头,在实验室条件下对水溶液进行了测量,得到满意的结果.
产水率是划分水淹级别的关键参数,如何通过含水饱和度计算产水率是进行水淹层评价工作要解决的主要问题. 通过测定油-水相对渗透率的注水实验制备出不同产水率的岩样,分析并研究不同产水率下的磁共振录井谱图特征和分析参数响应特征,可探讨利用磁共振录井资料评价水淹级别的可行性. 该工作根据密闭取心井的试油资料和相渗曲线,提出了利用磁共振含水饱和度计算地层产水率经验公式的方法, 并进行了生产应用. 结果表明,利用磁共振录井技术评价水淹层的符合率达到了86%,证明了该项技术在快速、定量评价水淹层和划分水淹级别的良好应用前景.
药物与血浆蛋白相互作用强弱是影响药物分布代谢与药效的关键因素之一. 本研究小组已报道用扩散加权谱、弛豫加权谱结合主成分分析(PCA)方法研究布洛芬(IBP)与血浆蛋白相互作用的个体差异性. 该文则研究核磁共振实验参数的设置对血浆与药物相互作用个体差异性研究的影响. 以对照血浆样品组与加入布洛芬血浆组为模型,改变扩散时间、梯度强度、回波时间这3种实验参数,采集了27套不同实验设置的扩散加权谱与10套不同回波时间的弛豫加权谱. 结果表明,扩散时间为0.1 s~0.14 s且梯度强度为1.52×10-3 T/cm~1.90×10-3 T/cm时采集的扩散加权谱或回波时间为70 ms~110 ms时采集的弛豫加权谱更适合用来研究血浆与布洛芬相互作用的个性化差异.
古菌蛋白质SSO6904是最近发现的一个全螺旋结构的、具有弱的钙离子结合活性的蛋白质. 在蛋白质纯化过程中,通过凝胶过滤层析发现SSO6904具有稳定的单体和双体形式. 1H NMR谱表明2种形式的核心结构类似. 2D 1H-15N HSQC谱表明单体和双体的结构差异主要处在连接螺旋2和3以及5和6的2个Loop链接区域,这2个Loop链接区域是形成双体的关键区域,而其他区域具有相同的结构. 通过结构分析推测并搭建了一种结构域交换的SSO6904双体结构模型. 这种稳定的双体形式可能是调节SSO6904功能的一种方式.
丁酸类代谢物广泛存在于动物、植物和微生物中,且具有多种重要的生理功能,但它们的固体核磁共振参数、分子动力学性质及其结构依赖性并未得到清楚的认识. 该文使用高分辨交叉极化与魔角旋转核磁共振(13C CPMAS)实验技术,分析了一系列固体丁酸类代谢物的13C化学位移, 发现了这些代谢物的13C化学位移与其分子结构的一些相关性规律. 另外还发现,固体丁酸类代谢物与其在溶液中的13C化学位移有显著的差异. 这些代谢物中甲基参与的疏水作用以及羟基、氨基和羧基参与的氢键作用均对其化学位移大小有重要的影响. 上述结果为认识代谢物的结构和功能以及功能对结构的依赖性提供了重要信息.
提出了一种基于FPGA的多通道磁共振成像接收模块,能对多个独立通道的磁共振信号进行直接采样、数字下变频,以及数据流控制,并对其进行了成像实验. 设计中采用Xilinx公司的系统级DSP开发工具——System Generator对FPGA内部所有功能进行建模、仿真并生成相应的硬件描述语言. 模块的采样速率为80MSPS,能灵活实现1 kHz~1 MHz范围的可变接收带宽,适用于1 T以下的磁共振成像系统;在单片FPGA内完成1~4个通道采样信号的数字正交解调,抽取滤波和数据流的处理,并可扩展至8通道. 实验证明模块具有体积小,集成度高,可重构性强和成本低等特点,为磁共振成像谱仪的多通道接收系统提供了一种高性能的数字化解决方案.
利用固体NMR技术、并结合TEM技术研究了POSS掺杂到不同聚合物体系后POSS复合物的链段运动及结构特点,其中聚合物包括聚甲基丙烯酸正丁酯(PBMA)和聚甲基丙烯酸甲酯(PMMA). 实验结果表明:POSS能很好的分散在这2种聚合物中,形成纳米结构的复合物;其中POSS在PBMA中形成的复合物表现出较强的链段运动性,而在PMMA中则表现出较低的运动性;同时,2D HETCOR的结果表明这2种聚合物本身结构特点不同,POSS/PBMA复合物中聚合物部分与POSS部分间的距离较近,而在POSS/PMMA中则较远.
提出了计算氟苯类化合物19F NMR化学位移的公式:δcal(19F)=-113.5+Δo+Δm+Δp+C, 结合最小二乘法通过线性回归得到了20种取代基参数, 计算结果以160种氟苯类化合物的263个19F NMR化学位移数据为样本点作回归检验,置信度为99.5%,计算值与实验值的平均偏差为0.628,计算值与实验值的标准偏差为4.720,约有93.2%的19F NMR化学位移计算值的计算误差<7.0(相对误差<0.7%).
利用原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)合成了分子量分布较窄的聚甲基丙烯酸N, N-二甲氨基乙酯{Poly\[2(diethylamino)ethylmethacry-late], PDMAEMA}并通过对液体核磁共振氢谱(1H NMR)化学位移以及弛豫时间(T1、T2)的测量,研究了聚合物PDMAEMA的温度敏感、pH敏感以及离子敏感3种环境敏感行为. 发现聚合物链段的运动性,以及温度和离子强度诱导的相变行为,都与体系的pH值具有强依赖关系. 室温下,聚合物链段的运动性随pH值的增大而降低. 酸性条件下,聚合物表现出离子敏感性,而不表现出温度敏感性. 碱性条件下,聚合物表现出温度敏感性,不表现出离子敏感性.
蛋白质的三维结构在很多情况下不能很好地解释其在生理过程中的作用机制. 动力学研究能够获悉蛋白质在不同时间尺度下的内运动信息,建立起动态结构和生物功能的联系. 该文综述了通过NMR自旋弛豫技术研究蛋白质动力学的原理和方法:ps~ns的快运动分析主要采用约化谱密度函数映射和Modelfree方法;μs~ms的慢运动涉及化学/构象交换过程,常借助CPMG和R1ρ弛豫色散手段. 基于NMR的蛋白质动力学研究,将蛋白质科学从三维空间结构推进到四维时空结构的新层面.