[1] Kay L E. Protein dynamics from NMR[J]. Nat Struct Biol, 1998, 5(Suppl): 513-517.
[2] Palmer A G, 3rd. NMR characterization of the dynamics of biomacromolecules[J]. Chem Rev, 2004, 104(8): 3 623-3 640.
[3] Henzler-Wildman K, Kern D. Dynamic personalities of proteins[J]. Nature, 2007, 450(7 172): 964-972.
[4] Fischer M W F, Majumdar A, Zuiderweg E R P. Protein NMR relaxation: theory, applications and outlook[J]. Prog Nucl Mag Res Sp 1998, 33(4): 207-272.
[5] Mittermaier A, Kay L E. New tools provide new insights in NMR studies of protein dynamics[J]. Science, 2006, 312(5 771): 224-228.
[6] Yang D, Kay L E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding[J]. J Mol Biol, 1996, 263(2): 369-382.
[7] Frederick K K, Marlow M S, Valentine K G, et al. Conformational entropy in molecular recognition by proteins[J]. Nature, 2007, 448(7 151): 325-329.
[8] Hu Yun-fei(胡蕴菲), Jin Chang-wen(金长文). NMR studies of protein solution structures and dynamics(蛋白质溶液结构及动力学的核磁共振研究)[J]. Chinese J Magn Reson(波谱学杂志), 2009, 26(2): 151-172.
[9] Ottiger M, Bax A. Determination of Relative N-HN, N-C′, Cα-C′, and Cα-Hα Effective Bond Lengths in a Protein by NMR in a Dilute Liquid Crystalline Phase[J]. J Am Chem Soc, 1998, 120(47): 12 334-12 341.
[10] Case D A. Calculations of NMR dipolar coupling strengths in model peptides[J]. J Biomol NMR, 1999, 15(2): 95-102.
[11] Fushman D, Cowburn D. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY[J]. J Biomol NMR, 1999, 13(2): 139-147.
[12] Palmer A G, 3rd. Nmr probes of molecular dynamics: overview and comparison with other techniques[J]. Annu Rev Biophys Biomol Struct, 2001, 30: 129-155.
[13] Jarymowycz V A, Stone M J. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences[J]. Chem Rev, 2006, 106(5): 1 624-1 671.
[14] Peng J W, Wagner G. Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments[J]. Biochemistry, 1992, 31(36): 8 571-8 586.
[15] Peng J W, Wagner G. Mapping of spectral density functions using heteronuclear NMR relaxation measurements[J]. J Magn Reson, 1992, 98: 308-332.
[16] Farrow N A, Zhang O, Szabo A, et al. Spectral density function mapping using 15N relaxation data exclusively[J]. J Biomol NMR, 1995, 6(2): 153-162.
[17] Peng J W, Wagner G. Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields[J]. Biochemistry, 1995, 34(51): 16 733-16 752.
[18] Viles J H, Donne D, Kroon G, et al. Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics[J]. Biochemistry, 2001, 40(9): 2 743-2 753.
[19] Dyson H J, Wright P E. Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance[J]. Adv Protein Chem, 2002, 62: 311-340.
[20] O'Sullivan D B, Jones C E, Abdelraheim S R, et al. Dynamics of a truncated prion protein, PrP(113-231), from 15N NMR relaxation: order parameters calculated and slow conformational fluctuations localized to a distinct region[J]. Protein Sci, 2009, 18(2): 410-423.
[21] Liu Jiang-xin(刘将新). The structures and dynamics of the PDZ domain from protein LARG in apo and complex states(LARG PDZ结构域在自由和复合物状态下结构与动力学的研究)[D]. Hefei(合肥): University of Science and Technology of China(中国科学技术大学), 2008.
[22] Phan I Q, Boyd J, Campbell I D. Dynamic studies of a fibronectin type I module pair at three frequencies: Anisotropic modelling and direct determination of conformational exchange[J]. J Biomol NMR, 1996, 8(4): 369-378.
[23] Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity[J]. J Am Chem Soc, 1982, 104(17): 4 546-4 559.
[24] Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results[J]. J Am Chem Soc, 1982, 104(17): 4 559-4 570.
[25] Liao Xin-li(廖新丽), Lin Dong-hai(林东海). Protein dynamics studied by heteronuclear multi-dimensional NMR(用异核多维NMR技术研究蛋白质动力学)[J]. Chinese J Magn Reson(波谱学杂志), 2004, 21(4): 385-396.
[26] Clore G M, Szabo A, Bax A, et al. Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen 15 nuclear magnetic relaxation of proteins[J]. J Am Chem Soc, 1990, 112(12): 4 989-4 991.
[27] Mandel A M, Akke M, Palmer A G, 3rd. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme[J]. J Mol Biol, 1995, 246(1): 144-163.
[28] d'Auvergne E J, Gooley P R. The use of model selection in the model-free analysis of protein dynamics[J]. J Biomol NMR, 2003, 25(1): 25-39.
[29] d'Auvergne E J, Gooley P R. Model-free model elimination: a new step in the model-free dynamic analysis of NMR relaxation data[J]. J Biomol NMR, 2006, 35(2): 117-135.
[30] Muhandiram D R, Yamazaki T, Sykes B D, et al. Measurement of 2H T1 and T1ρ Relaxation times in uniformly 13C labeled and fractionally 2H-labeled proteins in solution[J]. J Am Chem Soc, 1995, 117(46): 11 536-11 544.
[31] Millet O, Muhandiram D R, Skrynnikov N R, et al. Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in 13C-labeled and fractionally 2H-enriched proteins in solution[J]. J Am Chem Soc, 2002, 124(22): 6 439-6 448.
[32] Mittermaier A, Kay L E. Measurement of methyl 2H quadrupolar couplings in oriented proteins. How uniform is the quadrupolar coupling constant?[J]. J Am Chem Soc, 1999, 121(45): 10 608-10 613.
[33] Igumenova T I, Frederick K K, Wand A J. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution[J]. Chem Rev, 2006, 106(5): 1 672-1 699.
[34] Skrynnikov N R, Millet O, Kay L E. Deuterium spin probes of side-chain dynamics in proteins. 2. Spectral density mapping and identification of nanosecond time-scale side-chain motions[J]. J Am Chem Soc, 2002, 124(22): 6 449-6 460.
[35] Kay L E, Torchia D A. The effects of dipolar cross correlation on 13C methyl-carbon T1, T2, and NOE measurements in macromolecules[J]. J Magn Reson, 1991, 95(3): 536-547.
[36] Jin C, Prompers J J, Bruschweiler R. Cross-correlation suppressed T1 and NOE experiments for protein side-chain 13CH2 groups[J]. J Biomol NMR, 2003, 26(3): 241-247.
[37] Kay L E, Bull T E, Nicholson L K, et al. The measurement of heteronuclear transverse relaxation times in ax3 spin systems via polarization-transfer techniques[J]. J Magn Reson, 1992, 100(3): 538-558.
[38] Cheng Peng(程鹏), Zhou Zhi-ming(周志明), Li Zhao(李钊), et al. NMR-based approaches for probing fast time scale dynamics of protein side chains(蛋白质支链动力学快运动的核磁共振研究)[J]. Chinese J Magn Reson(波谱学杂志), 2008, 25(2): 145-158.
[39] Ernst M, Ernst R R. Heteronuclear dipolar cross-correlated cross relaxation for the investigation of side-chain motions[J]. J Magn Reson Ser A, 1994, 110(2): 202-213.
[40] Liu W, Zheng Y, Cistola D P, et al. Measurement of methyl 13C-1H cross-correlation in uniformly 13C, 15N, labeled proteins[J]. J Biomol NMR, 2003, 27(4): 351-364.
[41] Zheng Y, Yang D. Measurement of dipolar cross-correlation in methylene groups in uniformly 13C, 15N-labeled proteins[J]. J Biomol NMR, 2004, 28(2): 103-116.
[42] Zhang X, Sui X, Yang D. Probing methyl dynamics from 13C autocorrelated and cross-correlated relaxation[J]. J Am Chem Soc, 2006, 128(15): 5 073-5 081.
[43] Yang D. Probing protein side chain dynamics via 13C NMR relaxation[J]. Protein Pept Lett, 2011, 18(4): 380-395.
[44] Xuan Jin-song(宣劲松), Wang Jin-feng(王金凤). Novel isotope labeling strategies for protein solution NMR spectroscopy: a review(核磁共振研究中蛋白质样品的同位素标记策略)[J]. Chinese J Magn Reson(波谱学杂志), 2008, 25(3): 435-445.
[45] Sheppard D, Sprangers R, Tugarinov V. Experimental approaches for NMR studies of side-chain dynamics in high-molecular-weight proteins[J]. Prog Nucl Magn Reson Spectrosc, 2010, 56(1): 1-45.
[46] Baldwin A J, Kay L E. NMR spectroscopy brings invisible protein states into focus[J]. Nat Chem Biol, 2009, 5(11): 808-814.
[47] Mittermaier A K, Kay L E. Observing biological dynamics at atomic resolution using NMR[J]. Trends Biochem Sci, 2009, 34(12): 601-611.
[48] Mittag T, Schaffhausen B, Gunther U L. Direct observation of protein-ligand interaction kinetics[J]. Biochemistry, 2003, 42(38): 11 128-11 136.
[49] Millet O, Loria J P, Kroenke C D, et al. The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale[J]. J Am Chem Soc, 2000, 122(12): 2 867-2 877.
[50] Pervushin K, Riek R, Wider G, et al. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution[J]. Proc Natl Acad Sci U S A, 1997, 94(23): 12 366-12 371.
[51] Loria J P, Rance M, Palmer A G, 3rd. A TROSY CPMG sequence for characterizing chemical exchange in large proteins[J]. J Biomol NMR, 1999, 15(2): 151-155.
[52] Trott O, Palmer A G, 3rd. R1ρ relaxation outside of the fast-exchange limit[J]. J Magn Reson, 2002, 154(1): 157-160.
[53] Palmer A G, 3rd, Massi F. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy[J]. Chem Rev, 2006, 106(5): 1 700-1 719.
[54] Kempf J G, Loria J P. Measurement of intermediate exchange phenomena[J]. Methods Mol Biol, 2004, 278: 185-231.
[55] Akke M, Arthur G. Palmer R. Monitoring macromolecular motions on microsecond to millisecond time scales by R1ρ-R1 constant relaxation time NMR spectroscopy[J]. J Am Chem Soc, 1996, 118(4): 911-912.
[56] Kempf J G, Jung J Y, Sampson N S, et al. Off-resonance TROSY (R1ρ-R1) for quantitation of fast exchange processes in large proteins[J]. J Am Chem Soc, 2003, 125(40): 12 064-12 065.
[57] Niu Xiao-gang(牛晓刚). Identification of the millisecond dynamical behaviors of protein-peptide interaction by NMR(利用核磁共振方法研究蛋白质与小肽相互作用时的毫秒动力学行为)[D]. Hefei(合肥): University of Science and Technology of China(中国科学技术大学), 2007.
[58] Boehr D D, Dyson H J, Wright P E. An NMR perspective on enzyme dynamics[J]. Chem Rev, 2006, 106(8): 3 055-3 079.
[59] Bax A. Weak alignment offers new NMR opportunities to study protein structure and dynamics[J]. Protein Sci, 2003, 12(1): 1-16.
[60] Prestegard J H, Bougault C M, Kishore A I. Residual dipolar couplings in structure determination of biomolecules[J]. Chem Rev, 2004, 104(8): 3 519-3 540.
[61] Blackledge M. Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings[J]. Prog Nucl Magn Reson Spectroscopy, 2005, 46(1): 23-61.
[62] Tolman J R, Ruan K. NMR residual dipolar couplings as probes of biomolecular dynamics[J]. Chem Rev, 2006, 106(5): 1 720-1 736.
[63] Lakomek N A, Lange O F, Walter K F, et al. Residual dipolar couplings as a tool to study molecular recognition of ubiquitin[J]. Biochem Soc T, 2008, 36(6): 1 433-1 437.
[64] Lange O F, Lakomek N A, Fares C, et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution[J]. Science, 2008, 320(5 882): 1 471-1 475. |