[1] Paul S M, Mytelka D S, Dunwiddie C T, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge[J]. Nat Rev Drug Discovery, 2010, 9: 203-214.
[2] Murray C W, Rees D C. The rise of fragment-based drug discovery[J]. Nature Chem, 2009, 1: 187-192.
[3] Lipinski C A. Drug-like properties and the causes of poor solubility and poor permeability[J]. J Pharmacol Toxicol Methods, 2000, 44: 235-249.
[4] Hajduk P J, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned[J]. Nat Rev Drug Discovery, 2007, 6: 211-219.
[5] Clackson T, Wells J A. A hot spot of binding energy in a hormone-receptor interface[J]. Science, 1995, 267: 383-386.
[6] Aggarwal S. Targeted cancer therapies[J]. Nat Rev Drug Discovery, 2010, 9: 427-428.
[7] Schade M, Oschkinat H. NMR fragment screening: Tackling protein-protein interaction targets[J]. Curr Opin Drug Discovery & Development, 2005, 8: 365-373.
[8] Alex A A, Flocco M M. Fragment-based drug discovery: what has it achieved so far?[J]. Curr Top Med Chem (Sharjah, United Arab Emirates), 2007, 7: 1 544-1 567.
[9] Huth J R, Park C, Petros A M, et al. Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies[J]. Chem Biol & Drug Design, 2007, 70: 1-12.
[10] Stockman B J, Kothe M, Kohls D, et al. Identification of allosteric PIF-pocket ligands for PDK1 using NMR-based fragment screening and H-1-N-15 TROSY experiments[J]. Chem Biol & Drug Design, 2009, 73: 179-188.
[11] Rees D C, Congreve M, Murray C W, et al. Fragment-based lead discovery[J]. Nat Rev Drug Discovery, 2004, 3: 660-672.
[12] Hajduk P J. Puzzling through fragment-based drug design[J]. Nat Chem Biol, 2006, 2: 658-659.
[13] Pellecchia M. Fragment-based drug discovery takes a virtual turn[J]. Nat Chem Biol, 2009, 5: 274-275.
[14] Zartler E R, Shapiro M J. Fragonomics: fragment-based drug discovery[J]. Curr Opin Chem Biol, 2005, 9: 366-370.
[15] Zartler E R, Mo H. Practical aspects of NMR-based fragment discovery[J]. Curr Top Med Chem, 2007, 7: 1 592-1 599.
[16] Schulz M N, Hubbard R E. Recent progress in fragment-based lead discovery[J]. Curr Opin Pharm, 2009, 9: 615-621.
[17] Congreve M, Carr R, Murray C, et al. A 'rule of three' for fragment-based lead discovery?[J]. Drug Discov Today, 2003, 8: 876-877.
[18] Hajduk P J. Fragment-based drug design: How big is too big?[J]. J Med Chem, 2006, 49: 6 972-6 976.
[19] Hesterkamp T, Whittaker M. Fragment-based activity space: smaller is better[J]. Curr Opin Chem Biol, 2008, 12: 260-268.
[20] Bembenek S D, Tounge B A, Reynolds C H. Ligand efficiency and fragment-based drug discovery[J]. Drug Discov Today, 2009, 14: 278-283.
[21] Abad-Zapatero C. Ligand efficiency indices for effective drug discovery[J]. Expert Opin Drug Discovery, 2007, 2: 469-488.
[22] Murray C W, Carr M G, Callaghan O, et al. Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency[J]. J Med Chem, 2010, 53: 5 942-5 955.
[23] Tanaka D, Tsuda Y, Shiyama T, et al. A practical use of ligand efficiency indices out of the fragment-based approach: ligand efficiencyguided lead identification of soluble epoxide hydrolase inhibitors[J]. J Med Chem, 2011, 54: 851-857.
[24] Orita M, Warizaya M, Amano Y, et al. Advances in fragment-based drug discovery platforms[J]. Exp Opin Drug Discovery, 2009, 4: 1 125-1 144.
[25] Kojima K, Konopleva M, McQueen T, et al. Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia[J]. Blood, 2006, 108: 993-1 000.
[26] Morselli E, Galluzzi L, Kepp O, et al. Nutlin kills cancer cells via mitochondrial p53[J]. Cell Cycle, 2009, 8: 1 647-1 648.
[27] Frearson J A, Wyatt P G, Gilbert I H, et al. Target assessment for antiparasitic drug discovery[J]. Trends in Parasitology, 2007, 23: 589-595.
[28] Hann M M, Leach A R, Harper G. Molecular complexity and its impact on the probability of finding leads for drug discovery[J]. J Chem Inf Comput Sci, 2001, 41: 856-864.
[29] Erlanson D A, McDowell R S, O'Brien T. Fragment-based drug discovery[J]. J Med Chem, 2004, 47: 3 463-3 482.
[30] Dalvit C. NMR methods in fragment screening: theory and a comparison with other biophysical techniques[J]. Drug Discovery Today, 2009, 14: 1 051-1 057.
[31] Zhou Qiu-ju(周秋菊), Xiang Jun-feng(向俊峰), Tang Ya-lin(唐亚林). Applications of nuclear magnetic resonance spectroscopy in drug discovery(核磁共振波谱在药物发现中的应用)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(1): 68-79.
[32] Hubbard R E, Davis B, Chen I, et al. The SeeDs approach: Integrating fragments into drug discovery[J]. Curr Top Med Chem, 2007, 7: 1 568-1 581.
[33] Shuker S B, Hajduk P J, Meadows R P, et al. Discovering high-affinity ligands for proteins: SAR by NMR[J]. Science, 1996, 274: 1 531-1 534.
[34] Hajduk P J, Gerfin T, Boehlen J M, et al. High-throughput nuclear magnetic resonance-based screening[J]. J Med Chem, 1999, 42: 2 315-2 317.
[35] Tu K C, Gochin M,Kollman P. Structural studies on a paramagnetic drug-DNA complex using pseudocontact shift constraints in NMR spectroscopy[J]. Faseb J, 1997, 11: M27.
[36] Dalvit C, Stockman B J, Flocco M, et al. Use of fluorine-19 NMR for high throughput screening: US, 2003-US177292004051214[P]. 2004.
[37] Lucas L H, Price K E, Larive C K. Epitope mapping and competitive binding of HSA drug site II ligands by NMR diffusion measurements[J]. J Am Chem Soc, 2004, 126: 14 258-14 266.
[38] Angulo J, Enriquez-Navas P M, Nieto P M. Ligand-receptor binding affinities from Saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates[J]. Chem-a Eur J, 2010, 16: 7 803-7 812.
[39] Di Micco S, Bassarello C, Bifulco G, et al. Differential-frequency saturation transfer difference NMR spectroscopy allows the detection of different ligand-DNA binding mods[J]. Angew Chem Int Ed Engl, 2005, 45: 224-228.
[40] Mari S, Serrano-Gomez D, Canada F J, et al. 1D saturation transfer difference NMR experiments on living cells: the DCSIGN/oligomannose interaction[J]. Angew Chem Int Ed Engl, 2004, 44: 296-298.
[41] Claasen B, Axmann M, Meinecke R, et al. Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin alpha(IIb)beta(3) in native platelets than in liposomes[J]. J Am Chem Soc, 2005, 127: 916-919.
[42] Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor[J]. J Amer Chem Soc, 2001, 123: 6 108-6 117.
[43] Dalvit C, Fogliatto G, Stewart A, et al. WaterLOGSY as a method for primary NMR screening: Practical aspects and range of applicability[J]. J Biom NMR, 2001, 21: 349-359.
[44] Jayalakshmi V, Krishna N R. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes[J]. J Magn Reson, 2002, 155: 106-118.
[45] Gossert A D, Henry C, Blommers M J J, et al. Time efficient detection of protein-ligand interactions with the polarization optimized POWaterLOGSY NMR experiment[J]. J Biom NMR, 2009, 43: 211-217.
[46] Chen I J,Hubbard R E. Lessons for fragment library design: analysis of output from multiple screening campaigns[J]. J Comput-Aid Mol Des, 2009, 23: 603-620.
[47] Jhoti H, Cleasby A, Verdonk M, et al. Fragment-based screening using X-ray crystallography and NMR spectroscopy[J]. Curr Opin Chem Biol, 2007, 11: 485-493.
[48] Hopkins A L, Groom C R,Alex A. Ligand efficiency: a useful metric for lead selection[J]. Drug Discovery Today, 2004, 9: 430-431.
[49] Howard S, Berdini V, Boulstridge J A, et al. Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity[J]. J Med Chem, 2009, 52: 379-388.
[50] Petros A M, Huth J R, Oost T, et al. Discovery of a potent and selective Bcl-2 inhibitor using SAR by NMR[J]. Bioorg Med Chem Lett, 2010, 20: 6 587-6 591.
[51] Brough P A, Barril X, Borgognoni J, et al. Combining hit identification strategies: Fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone[J]. J Med Chem, 2009, 52: 4 794-4 809.
[52] Jahnke W, Florsheimer A, Blommers M J J, et al. Second-site NMR screening and linker design[J]. Curr Top Med Chem, 2003, 3: 69-80.
[53] Antonyuk S, Strange R W, Hasnain S S. Structural discovery of small molecule binding sites in Cu-Zn human superoxide dismutase familial amyotrophic lateral sclerosis mutants provides insights for lead optimization[J]. J Med Chem, 2010, 53: 1 402-1 406.
[54] Chung F, Tisne C, Lecourt T, et al. NMR-Guided fragment-based approach for the design of tRNA(Lys3) ligands[J]. Angew Chem Int Edit, 2007, 46: 4 489-4 491.
[55] Scheich C, Puetter V, Schade M. Novel small molecule inhibitors of MDR mycobacterium tuberculosis by NMR fragment screening of antigen 85C[J]. J Med Chem, 2010, 53: 8 362-8 367.
[56] Szczepankiewicz B G, Liu G, Hajduk P J, et al. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy[J]. J Am Chem Soc, 2003, 125: 4 087-4 096.
[57] Petros A M, Dinges J, Augeri D J, et al. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-x(L) from NMR and parallel synthesis[J]. J Med Chem, 2006, 49: 656-663.
[58] Pellecchia M, Becattini B, Crowell K J, et al. NMR-based techniques in the hit identification and optimisation processes[J]. Expert Opin Therapeutic Targets, 2004, 8: 597-611.
[59] Becattini B, Culmsee C, Leone M, et al. Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 12 602-12 606.
[60] Sanchez-Pedregal V M, Reese M, Meiler J, et al. The INPHARMA method: Protein-mediated interligand NOEs for pharmacophore mapping[J]. Angewa Chem Int Edit, 2005, 44: 4 172-4 175.
[61] Macnaughtan M A, Kamar M, AlvarezManilla G, et al. NMR structural characterization of substrates bound to N-scetylglucosaminyltransferase V[J]. J Mol Biol, 2007, 366: 1 266-1 281.
[62] Orts J, Griesinger C, Carlomagno T. The INPHARMA technique for pharmacophore mapping: A theoretical guide to the method[J]. J Magn Reson, 2009, 200: 64-73.
[63] Bi Yun-chen(毕允晨), Wang Yu-juan(王玉娟), Wang Jun-feng(王俊峰). The Nanodics: A novel tool to study membrane protein structure and function (Nanodisc体系在膜蛋白结构与功能研究中的应用)[J]. Chinese J Magn Reson(波谱学杂志), 2011, 28(2): 177-189.
[64] Tolman J R, Ruan K. NMR residual dipolar couplings as probes of biomolecular dynamics[J]. Chemical Reviews, 2006, 106: 1 720-1 736.
[65] Losonczi J A, Andrec M, Fischer M W F, et al. Order matrix analysis of residual dipolar couplings using singular value decomposition[J]. J Magn Reson, 1999, 138: 334-342.
[66] Ruan K, Tolman J R. Composite alignment media for the measurement of independent sets of NMR residual dipolar couplings[J]. J Am Chem Soc, 2005, 127: 15 032-15 033.
[67] Ruan K, Briggman K B, Tolman J R. De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media[J]. J Biomol NMR, 2008, 41: 61-76.
[68] Yao L, Voegeli B, Torchia D A, et al.Simultaneous NMR study of protein structure and dynamics using conservative mutagenesis[J]. J Phys Chem B, 2008, 112: 6 045-6 056.
[69] Seidel R D, 3rd, Zhuang T, Prestegard J H. Bound-state residual dipolar couplings for rapidly exchanging ligands of His-tagged proteins[J]. J Am Chem Soc, 2007, 129: 4 834-4 839.
[70] Zhuang T, Leffler H, Prestegard J H. Enhancement of bound-state residual dipolar couplings: conformational analysis of lactose bound to Galectin-3[J]. Protein Sci, 2006, 15: 1 780-1 790.
[71] Clore G M, Iwahara J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient lowpopulation states of biological macromolecules and their complexes[J]. Chem Rev, 2009, 109: 4 108-4 139.
[72] Chun T, Schwieters C D, Clore G M. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR[J]. Nature, 2007: 1 078-1 082.
[73] Morgado L, Saraiva I H, Louro R O, et al. Orientation of the axial ligands and magnetic properties of the hemes in the triheme ferricytochrome PpcA from G. sulfurreducens determined by paramagnetic NMR[J]. Febs Lett, 2010, 584: 3 442-3 445.
[74] Gochin M, Zhou G, Phillips A H. Paramagnetic relaxation assisted docking of a small indole compound in the HIV-1 gp41 hydrophobic pocket[J]. Acs Chem Biol, 2011, 6: 267-274.
[75] Otting G. Protein NMR using paramagnetic ions[J]. Annu Rev Biophysics, 2010, 39: 387-405. |