[1] |
ARDESHNA D R, CAO T, RODGERS B, et al. Recent advances in the diagnostic evaluation of pancreatic cystic lesions[J]. World J Gastroenterol, 2022, 28(6): 624-634.
doi: 10.3748/wjg.v28.i6.624
|
[2] |
XU X B, CHEN H, SUN B. Progress in diagnosis and treatment of pancreatic cystic tumors[J]. Chinese Journal of Operative Procedures of General Surgery (Electronic Edition), 2020, 14(6): 643-646.
|
|
徐西伯, 陈华, 孙备. 胰腺囊性肿瘤的诊治进展[J]. 中华普外科手术学杂志(电子版), 2020, 14(6): 643-646.
|
[3] |
JANG D K, SONG B J, RYU J K, et al. Preoperative diagnosis of pancreatic cystic lesions: the accuracy of endoscopic ultrasound and cross-sectional imaging[J]. Pancreas, 2015, 44(8): 1329-1333.
doi: 10.1097/MPA.0000000000000396
|
[4] |
SUN Y, YANG S, QI E, et al. Comparative diagnostic evaluation with contrast-enhanced ultrasound, computed tomography and magnetic resonance imaging in patients with pancreatic cystic neoplasms[J]. Cancer Manag Res, 2020, 12: 2889-2898.
doi: 10.2147/CMAR.S246564
pmid: 32425602
|
[5] |
BOLLEN T L, WESSELS F J. Radiological workup of cystic neoplasms of the pancreas[J]. Visceral Med, 2018, 34(3): 182-190.
doi: 10.1159/000489674
|
[6] |
陈海燕. 影像学特征联合增强CT纹理特征鉴别胰腺浆液性囊腺瘤与黏液性囊腺瘤[D]. 浙江大学, 2020.
|
[7] |
袁梦依. 基于影像组学特征融合的胰腺囊性肿瘤分类[D]. 浙江工业大学, 2020.
|
[8] |
ZHANG Y F, XU S S, WU J, et al. Value of CT texture analysis in differentiating pancreatic serous cystadenoma from mucinous cystadenoma[J]. Journal of Southeast University (Medical Science Edition), 2022, 41(3): 308-316.
|
|
张怡帆, 徐珊珊, 吴锦, 等. CT纹理分析在鉴别胰腺浆液性囊腺瘤与黏液性囊腺瘤中的价值[J]. 东南大学学报(医学版), 2022, 41(3): 308-316.
|
[9] |
CHEN S, CHEN X, CHEN J Y, et al. Application of CT radiomics in differential diagnosis of pancreatic serous and mucinous cystic neoplasm[J]. Chinese Journal of CT and MRI, 2022, 20(10): 92-95.
|
|
陈帅, 陈晓, 陈井亚, 等. 基于CT影像组学对胰腺浆液及黏液性囊性肿瘤鉴别诊断[J]. 中国CT和MRI杂志, 2022, 20(10): 92-95.
|
[10] |
YANG Y F, QI Z X, NIE S D. Differentiation of benign and malignant breast lesions based on multimodal MRI and deep learning[J]. Chinese J Magn Reson, 2022, 39(4): 401-412.
|
|
杨一风, 祁章璇, 聂生东. 基于多模态MRI与深度学习的乳腺病变良恶性鉴别[J]. 波谱学杂志, 2022, 39(4): 401-412.
|
[11] |
WEI Z H, YAN S J, HAN B S, et al. Diagnosis of alzheimer's disease based on multi-output three-dimensional convolutional neural network[J]. Chinese J Magn Reson, 2021, 38(1): 92-100.
|
|
魏志宏, 闫士举, 韩宝三, 等. 基于多输出的3D卷积神经网络诊断阿尔兹海默病[J]. 波谱学杂志, 2021, 38(1): 92-100.
|
[12] |
NGUON L S, SEO K, LIM J H, et al. Deep learning-based differentiation between mucinous cystic neoplasm and serous cystic neoplasm in the pancreas using endoscopic ultrasonography[J]. Diagnostics, 2021, 11(6): 1052.
doi: 10.3390/diagnostics11061052
|
[13] |
VILAS-BOAS F, RIBEIRO T, AFONSO J, et al. Deep learning for automatic differentiation of mucinous versus non-mucinous pancreatic cystic lesions: a pilot study[J]. Diagnostics, 2022, 12(9): 2041.
doi: 10.3390/diagnostics12092041
|
[14] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 4700-4708.
|
[15] |
ZHOU Q, ZHOU Z, CHEN C, et al. Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images[J]. Comput Biol Med, 2019, 107: 47-57.
doi: S0010-4825(19)30032-0
pmid: 30776671
|
[16] |
WANG Z, LI X, YAO M, et al. A new detection model of microaneurysms based on improved FC-DenseNet[J]. Sci Rep, 2022, 12(1): 1-9.
doi: 10.1038/s41598-021-99269-x
|
[17] |
GUO W, XU Z, ZHANG H. Interstitial lung disease classification using improved DenseNet[J]. Multimed Tools Appl, 2019, 78(21): 30615-30626.
doi: 10.1007/s11042-018-6535-y
|
[18] |
YANG Y H, LIU M, WANG X M, et al. Breast cancer image recognition based on DenseNet and transfer learning[J]. Journal of Jilin University, 2022, 40(2): 213-218.
|
|
杨雨航, 刘铭, 王新民, 等. 基于DenseNet和迁移学习的乳腺癌图像识别[J]. 吉林大学学报, 2022, 40(2): 213-218.
|
[19] |
ZHOU Y, ZHANG X, WANG Y, et al. Transfer learning and its application research[J]. J Phys: Conf Ser, 2021, 1920(1): 012058.
doi: 10.1088/1742-6596/1920/1/012058
|
[20] |
LI Y, SONG P H. Review of transfer learning in medical image classification[J]. Journal of Image and Graphics, 2022, 27(3): 672-686.
|
|
黎英, 宋佩华. 迁移学习在医学图像分类中的研究进展[J]. 中国图象图形学报, 2022, 27(3): 672-686.
|
[21] |
KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
|
[22] |
ZEILER M D. Adadelta: an adaptive learning rate method[J]. arXiv preprint arXiv:1212.5701, 2012.
|
[23] |
DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. J Mach Learn Res, 2011, 12(7): 2121-2159.
|
[24] |
DEAN J, CORADO G, MONGA R, et al. Large scale distributed deep networks[J]. Adv Neural Inf Process Syst, 2012, 25: 1-11.
|