[1] |
LABRANCHE R, GILBERT G, CERNY M, et al. Liver iron quantification with MR imaging: A primer for radiologists[J]. Radiographics, 2018, 38(2): 392-412.
doi: 10.1148/rg.2018170079
pmid: 29528818
|
[2] |
WOOD J C, ENRIQUEZ C, GHUGRE N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients[J]. Blood, 2005, 106(4): 1460-1465.
doi: 10.1182/blood-2004-10-3982
|
[3] |
HUANG J W, CHENG Z L, YANG Q H, et al. MRI-T2* technique in quantitative analysis of myocardium, liver and pancreas iron deposition in β-thalassemia major and the correlations with glucose metabolism[J]. Chin J Med Imaging Technol, 2021, 37(4): 557-561.
|
|
黄静文, 程子亮, 杨绮华, 等. MRI-T2*技术定量分析β-重型地中海贫血心脏、肝脏、胰腺铁沉积及其与糖代谢的相关性[J]. 中国医学影像技术, 2021, 37(4): 557-561.
|
[4] |
LU H M, ZHU J, WANG F, et al. Study on R2* combined with T1-mapping to evaluate iron overload in liver[J]. J Med Imaging, 2022, 32(8): 1036-1039.
|
|
卢慧敏, 朱娟, 汪飞, 等. 磁共振R2*联合T1-mapping对肝脏铁过载评估的研究[J]. 医学影像学杂志, 2022, 32(8): 1036-1039.
|
[5] |
MELONI A, ZMYEWSKI H, RIENHOFF H Y, et al. Fast approximation to pixelwise relaxivity maps: Validation in iron overloaded subjects[J]. Magn Reson Imaging, 2013, 31(7): 1074-1080.
doi: 10.1016/j.mri.2013.05.005
pmid: 23773621
|
[6] |
CONSTANTINIDES C D, ATALAR E, MCVEIGH E R. Signal-to-noise measurements in magnitude images from NMR phased arrays[J]. Magn Reson Med, 1997, 38(5): 852-857.
pmid: 9358462
|
[7] |
FENG Y, HE T, GATEHOUSE P D, et al. Improved MRI R2* relaxometry of iron-loaded liver with noise correction[J]. Magn Reson Med, 2013, 70(6): 1765-1774.
doi: 10.1002/mrm.v70.6
|
[8] |
WANG C, ZHANG X, LIU X, et al. Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization[J]. Magn Reson Med, 2018, 80(2): 792-801.
doi: 10.1002/mrm.v80.2
|
[9] |
FENG L, MA D, LIU F. Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends[J]. NMR Biomed, 2022, 35(4): e4416.
doi: 10.1002/nbm.v35.4
|
[10] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// Lect Notes Comput Sci (including Subser Lect Notes Artif. Intell Lect. Notes Bioinformatics), vol. 9351, Springer, Cham, 2015: 234-241.
|
[11] |
LIU F, FENG L, KIJOWSKI R. MANTIS: Model-augmented neural network with incoherent k-space sampling for efficient MR parameter mapping[J]. Magn Reson Med, 2019, 82(1): 174-188.
doi: 10.1002/mrm.27707
pmid: 30860285
|
[12] |
LIU F, KIJOWSKI R, EL FAKHRI G, et al. Magnetic resonance parameter mapping using model-guided self-supervised deep learning[J]. Magn Reson Med, 2021, 85(6): 3211-3226.
doi: 10.1002/mrm.28659
pmid: 33464652
|
[13] |
GETREUER P. Rudin-Osher-Fatemi total variation denoising using split bregman[J]. Image Process Line, 2012, 2: 74-95.
doi: 10.5201/ipol
|
[14] |
SHI B L, ZHOU Y M, PANG Z F. Image denoising via anisotropic total-variation-based method[J]. J Nantong Univ, Nat Sci Ed, 2019, 18(4): 24-33.
|
|
史宝丽, 周亚美, 庞志峰. 各向异性全变分图像去噪算法[J]. 南通大学学报(自然科学版), 2019, 18(4): 24-33.
|
[15] |
LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195.
doi: 10.1002/mrm.21391
pmid: 17969013
|
[16] |
LIU J, SUN Y, XU X, et al. Image restoration using total variation regularized deep image prior[C]// IEEE Int Conf Acoust Speech Signal Process, IEEE, 2019: 7715-7719.
|
[17] |
STRONG D, CHAN T. Edge-preserving and scale-dependent properties of total variation regularization[J]. Inverse Probl, 2003, 19(6): S165-S187.
doi: 10.1088/0266-5611/19/6/059
|
[18] |
ZHU W. A first-order image restoration model that promotes image contrast preservation[J]. J Sci Comput, 2021, 88(2): 1-23.
doi: 10.1007/s10915-021-01519-7
|
[19] |
HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]// 2015 IEEE Int Conf Comput Vis, IEEE, 2015: 1026-1034.
|
[20] |
SANDINO C M, CHENG J Y, CHEN F, et al. Compressed sensing: From research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging[J]. IEEE Signal Process Mag, 2020, 37(1): 117-127.
|
[21] |
WANG Z, BOVIK AC, SHEIKH HR, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600-612.
doi: 10.1109/TIP.2003.819861
|
[22] |
VAN DER WALT S, SCHÖNBERGER JL, NUNEZ-IGLESIAS J, et al. scikit-image: image processing in Python[J]. Peer J, 2014, 2: e453.
doi: 10.7717/peerj.453
|
[23] |
CHENG H T, WANG S S, KE Z W, et al. A deep recursive cascaded convolutional network for parallel MRI[J]. Chinese J Magn Reson, 2019, 36(4): 437-445
|
|
程慧涛, 王珊珊, 柯子文, 等. 基于深度递归级联卷积神经网络的并行磁共振成像方法[J]. 波谱学杂志, 2019, 36(4): 437-445.
|
[24] |
WANG Y S, DENG A Q, MAO J L, et al. Automatic segmentation of knee joint synovial magnetic resonance images based on 3D VNetTrans[J]. Chinese J Magn Reson, 2022, 39(3): 303-315
|
|
王颖珊, 邓奥琦, 毛瑾玲, 等. 基于3D VNetTrans的膝关节滑膜磁共振图像自动分割[J]. 波谱学杂志, 2022, 39(3): 303-315.
|
[25] |
ZHANG T, PAULY J M, LEVESQUE I R. Accelerating parameter mapping with a locally low rank constraint[J]. Magn Reson Med, 2015, 73(2): 655-661.
doi: 10.1002/mrm.25161
pmid: 24500817
|
[26] |
ZHAO B, LU W, HITCHENS T K, et al. Accelerated MR parameter mapping with low-rank and sparsity constraints[J]. Magn Reson Med, 2015, 74(2): 489-498.
doi: 10.1002/mrm.25421
pmid: 25163720
|
[27] |
ROMANO Y, ELAD M, MILANFAR P. The little engine that could: Regularization by Denoising (RED)[J]. SIAM J Imaging Sci, 2017, 10(4): 1804-1844.
doi: 10.1137/16M1102884
|
[28] |
LANDMAN B A, BAZIN P L, SMITH S A, et al. Robust estimation of spatially variable noise fields[J]. Magn Reson Med, 2009, 62(2): 500-509.
doi: 10.1002/mrm.22013
pmid: 19526510
|
[29] |
HENNINGER B, ALUSTIZA J, GARBOWSKI M, et al. Practical guide to quantification of hepatic iron with MRI[J]. Eur Radiol, 2020, 30(1): 383-393.
doi: 10.1007/s00330-019-06380-9
pmid: 31392478
|