波谱学杂志 ›› 2023, Vol. 40 ›› Issue (3): 280-292.doi: 10.11938/cjmr20233059

• 研究论文 • 上一篇    下一篇

融合多重自注意力和可变形卷积的多模态脑胶质瘤分割

赵欣1,*(),张鑫1,李鑫杰1,王洪凯2   

  1. 1.大连大学 信息工程学院,辽宁 大连 116622
    2.大连理工大学 生物医学工程学院,辽宁 大连 116024
  • 收稿日期:2023-03-13 出版日期:2023-09-05 在线发表日期:2023-04-19
  • 通讯作者: *Tel: 18525639818, E-mail: zhaoxin@dlu.edu.cn.
  • 基金资助:
    国家自然科学基金资助项目(81971693)

Multimodal Glioma Segmentation with Fusion of Multiple Self-attention and Deformable Convolutions

ZHAO Xin1,*(),ZHANG Xin1,LI Xinjie1,WANG Hongkai2   

  1. 1. School of Information Engineering, Dalian University, Dalian 1116622, China
    2. School of Biomedical Engineering, Dalian University of technology, Dalian 116024, China
  • Received:2023-03-13 Published:2023-09-05 Online:2023-04-19
  • Contact: *Tel: 18525639818, E-mail: zhaoxin@dlu.edu.cn.

摘要:

脑胶质瘤的磁共振图像分割对于脑肿瘤的诊断、手术规划以及放疗等治疗方案的确定具有非常重要的意义.针对现有脑肿瘤分割算法分割精度不高边缘分割不精确,易出现假阳性的问题,本文提出一种基于多重自注意力和可变形卷积的Unet改进模型.模型将原始Unet框架的标准卷积替换为残差模块,以防止模型训练过程中出现梯度消失;通过在瓶颈层加入基于Transformer的多重自注意力模块来提取局部特征和全局上下文信息,以更好地挖掘像素间的相关性;在跨层连接处采用可变形卷积来增强模型对形状感知的敏感性,以提升肿瘤边缘特征的提取能力.实验结果表明,所提算法的分割结果评价指标高于使用同样数据集的其他对比模型,而且对肿瘤边缘的分割更加精确.这表明本文算法是一种有效的脑胶质瘤自动分割算法.

关键词: 图像分割, 脑胶质瘤, Unet, Transformer自注意力, 可变形卷积

Abstract:

The magnetic resonance image segmentation of glioma is significant in disease diagnosis, surgical planning, and determination of treatment plans such as radiotherapy. In response to the problem of low segmentation accuracy, inaccurate edge segmentation, and prone to false positives in existing brain tumor segmentation algorithms, an improved Unet model based on multi-head self-attention and deformable convolution is proposed. The model replaces the standard convolution of the original Unet framework with residual modules to prevent vanishing gradient during model training. Multi-head self-attention modules based on Transformer are added in the bottleneck layer to extract local features and global context information for better exploration of correlations between pixels. Deformable convolution is used at cross-layer connections to enhance the model's sensitivity to shape perception and improve the ability to extract tumor edge features. Experimental results show that the segmentation evaluation metrics of the proposed algorithm are higher than those of other comparative literature and models using the same dataset, with more precise segmentation of tumor edges. This indicates that the algorithm proposed in this paper is an effective automatic glioma segmentation algorithm.

Key words: image segmentation, glioma, Unet, Transformer self-attention, deformable convolution

中图分类号: