[1] |
EDELMAN R R, WARACH S. Medical progress: Magnetic resonance imaging[J]. New Engl J Med, 1993, 328(11): 785-791.
doi: 10.1056/NEJM199303183281109
|
[2] |
BUXTON R B. Introduction to functional magnetic resonance imaging: principles and techniques[M]. Cambridge university press, 2009.
|
[3] |
MORRIS S A, SLESNICK T C. Magnetic resonance imaging[J]. Visual Guide to Neonatal Cardiology, 2018: 104-108.
|
[4] |
LARKMAN D J, NUNES R G. Parallel magnetic resonance imaging[J]. Phys Med Biol, 2007, 52(7): R15-55.
doi: 10.1088/0031-9155/52/7/R01
pmid: 17374908
|
[5] |
CARLSON J W. An algorithm for NMR imaging reconstruction based on multiple RF receiver coils[J]. J Magn Reson (1969), 1987, 74(2): 376-380.
doi: 10.1016/0022-2364(87)90348-9
|
[6] |
HUTCHINSON M, RAFF U. Fast MRI data acquisition using multiple detectors[J]. Magn Reson Med, 1988, 6(1): 87-91.
pmid: 3352509
|
[7] |
GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magn Reson Med, 2002, 47(6): 1202-1210.
doi: 10.1002/mrm.10171
pmid: 12111967
|
[8] |
PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: sensitivity encoding for fast MRI[J]. Magn Reson Med, 1999, 42(5): 952-962.
pmid: 10542355
|
[9] |
LUSTIG M, PAULY J M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space[J]. Magn Reson Med, 2010, 64(2): 457-471.
doi: 10.1002/mrm.22428
|
[10] |
DENG L, YU D. Deep learning: Methods and applications[J]. Found Trends Signal, 2014, 7(3,4): 197-387.
|
[11] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539
|
[12] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234-241.
|
[13] |
WANG S S, SU Z H, YING L, et al. Accelerating magnetic resonance imaging via deep learning[C]// 2016 IEEE 13th international symposium on biomedical imaging (ISBI). IEEE, 2016: 514-517.
|
[14] |
SCHLEMPER J, DUAN J, OUYANG C, et al. Data consistency networks for (calibration-less) accelerated parallel MR image reconstruction[EB/OL]. arXiv preprint, arXiv:19-09.11795, 2019.
|
[15] |
SCHLEMPER J, QIN C, DUAN J M, et al. Σ-net: Ensembled iterative deep neural networks for accelerated parallel MR image reconstruction[EB/OL]. arXiv preprint, arXiv:1912.05480, 2019.
|
[16] |
SRIRAM A, ZBONTAR J, MURRELL T, et al. GrappaNet: Combining parallel imaging with deep learning for multi-coil MRI reconstruction[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 14315-14322.
|
[17] |
LEE D, YOO J, TAK S, et al. Deep residual learning for accelerated MRI using magnitude and phase networks[J]. IEEE Trans Biomed Eng, 2018, 65(9): 1985-1995.
doi: 10.1109/TBME.2018.2821699
pmid: 29993390
|
[18] |
CHENG H T, WANG S S, KE Z W, et al. A Deep recursive cascaded convolutional network for parallel MRI[J]. Chinese J Magn Reson, 2019, 36(4): 437-445.
|
|
程慧涛, 王珊珊, 柯子文, 等. 基于深度递归级联卷积神经网络的并行磁共振成像方法[J]. 波谱学杂志, 2019, 36(4): 437-445.
|
[19] |
TRABELSI C, BILANIUK O, ZHANG Y, et al. Deep complex networks[EB/OL]. arXiv preprint, arXiv:1705.09792, 2017.
|
[20] |
DEDMARI M A, CONJETI S, ESTRADA S, et al. Complex fully convolutional neural networks for MR image reconstruction[C]// International Workshop on Machine Learning for Medical Image Reconstruction. Springer, Cham, 2018: 30-38.
|
[21] |
LIANG H Y, GONG Y, KERVADEC H, et al. Laplacian pyramid-based complex neural network learning for fast MR imaging[C]// Medical Imaging with Deep Learning. PMLR, New York, 2020: 454-464.
|
[22] |
WANG S S, CHENG H T, YING L, et al. DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution[J]. Magn Reson Imaging, 2020, 68: 136-147.
doi: S0730-725X(19)30533-8
pmid: 32045635
|
[23] |
施伟成, 王春林, 金朝阳. 基于PCU-Net网络的快速多通道磁共振成像方法[P]. 中国: CN112946545A, 2021-06-11.
|
[24] |
MYRONENKO A. 3D MRI brain tumor segmentation using autoencoder regulari-zation[C]// International MICCAI Brainlesion Workshop. Springer, Cham, 2018: 311-320.
|
[25] |
LIN M, CHEN Q, YAN S Q. Network in network[EB/OL]. arXiv preprint arXiv:1312.4400, 2013.
|
[26] |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Boston, 2015: 1-9.
|
[27] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Las Vegas, 2016: 770-778.
|
[28] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE T Image Process, 2004, 13(4): 600-612.
doi: 10.1109/tip.2003.819861
pmid: 15376593
|
[29] |
ZHANG T, PAULY J M, VASANAWALA S S, et al. Coil compression for accelerated imaging with Cartesian sampling[J]. Magn Reson Med, 2013, 69(2): 571-582.
doi: 10.1002/mrm.24267
pmid: 22488589
|