波谱学杂志 ›› 2021, Vol. 38 ›› Issue (4): 491-502.doi: 10.11938/cjmr20212939
收稿日期:
2021-07-29
出版日期:
2021-12-05
发布日期:
2021-09-17
通讯作者:
贺鹤勇
E-mail:heyonghe@fudan.edu.cn
基金资助:
Xin CHEN,Ying-yi FU,Bin YUE,He-yong HE*()
Received:
2021-07-29
Online:
2021-12-05
Published:
2021-09-17
Contact:
He-yong HE
E-mail:heyonghe@fudan.edu.cn
摘要:
固体核磁共振技术是研究固体催化剂酸碱性的有效工具.本文主要介绍了本课题组利用固体核磁共振技术进行固体酸催化剂酸碱性研究的进展,包括吸附水分子对金属氧化物表面酸性质影响的研究,以及结合酸碱探针分子共吸附表征方法对金属氧化物表面酸碱性的研究,对固体核磁共振技术定性和定量分析固体催化剂的酸碱性提出了一些新的见解.
中图分类号:
陈欣,付颖懿,岳斌,贺鹤勇. 固体核磁共振技术研究金属氧化物类固体酸催化剂的酸碱性[J]. 波谱学杂志, 2021, 38(4): 491-502.
Xin CHEN,Ying-yi FU,Bin YUE,He-yong HE. Acidity and Basicity of Solid Acid Catalysts Studied by Solid-State NMR[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 491-502.
表1
吸附不同量水分子的铌氧化物和钽氧化物的酸性数据[40]
样品 | 吸附水量/ (μmol·g-1) | Brønsted酸密度/ (μmol·g-1) | Lewis酸密度/(μmol·g-1) | 总酸密度/ (μmol·g-1) | ||
强 | 弱 | 总量 | ||||
Nb2O5·nH2O | 0 | 251 | 340 | 549 | 889 | 1140 |
50 | 278 | 309 | 574 | 883 | 1161 | |
100 | 291 | 300 | 584 | 884 | 1175 | |
150 | 303 | 291 | 595 | 886 | 1189 | |
Nb2O5-350 | 0 | 107 | 219 | 375 | 594 | 701 |
50 | 143 | 186 | 409 | 595 | 738 | |
100 | 181 | 149 | 449 | 598 | 779 | |
150 | 182 | 129 | 469 | 598 | 780 | |
Nb2O5-450 | 0 | 52 | 107 | 236 | 343 | 395 |
50 | 54 | 91 | 253 | 344 | 398 | |
100 | 57 | 78 | 268 | 346 | 403 | |
150 | 55 | 67 | 281 | 348 | 403 | |
Ta2O5·nH2O | 0 | 209 | 160 | 332 | 492 | 701 |
50 | 219 | 148 | 345 | 493 | 712 | |
100 | 243 | 122 | 367 | 489 | 732 | |
150 | 251 | 110 | 375 | 485 | 736 | |
Ta2O5-350 | 0 | 89 | 123 | 273 | 396 | 485 |
50 | 110 | 103 | 296 | 399 | 509 | |
100 | 135 | 80 | 316 | 396 | 531 | |
150 | 133 | 65 | 330 | 395 | 528 | |
Ta2O5-450 | 0 | 38 | 57 | 150 | 207 | 245 |
50 | 37 | 42 | 168 | 210 | 247 | |
100 | 39 | 30 | 178 | 208 | 246 | |
150 | 36 | 24 | 185 | 209 | 248 |
表2
采用TMP或13CO2单吸附及两者共吸附方法得到的催化剂酸碱位密度[45]
催化剂 | 吸附模式 | 碱密度/(μmol·g-1) | 酸密度/(μmol·g-1) | ||||||
强 | 中等 | 弱 | 总量 | Lewis酸 | Brønsted酸 | 总量 | |||
MgO | 单吸附 | - | 10.5 | - | 10.5 | - | - | - | |
共吸附 | 3.6 | 6.9 | 6.7 | 17.2 | 15.8 | - | 15.8 | ||
ZrO2 | 单吸附 | 0.1 | 8.9 | 6.0 | 15.0 | 108.5 | 2.8 | 111.3 | |
共吸附 | 0.8 | 13.0 | 6.0 | 19.8 | 65.0 | 10.8 | 75.8 | ||
Al2O3 | 单吸附 | - | 4.2 | 36.6 | 40.8 | 220.1 | 25.9 | 246.0 | |
共吸附 | - | 4.2 | 53.6 | 57.8 | 175.9 | 102.3 | 278.2 |
1 | LERCHER J A , GRUNDLING C , EDER-MIRTH G . Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules[J]. Catal Today, 1996, 27 (3): 353- 376. |
2 |
BUSCA G . Spectroscopic characterization of the acid properties of metal oxide catalysts[J]. Catal Today, 1998, 41 (1-3): 191- 206.
doi: 10.1016/S0920-5861(98)00049-2 |
3 |
TOPSØE N Y , PEDERSEN K , DEROUANE E G . Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites[J]. J Catal, 1981, 70 (1): 41- 52.
doi: 10.1016/0021-9517(81)90315-8 |
4 |
HIDALGO C V , ITOH H , HATTORI T , et al. Measurement of the acidity of various zeolites by temperature-programmed desorption of ammonia[J]. J Catal, 1984, 85 (2): 362- 369.
doi: 10.1016/0021-9517(84)90225-2 |
5 |
BROWN S P . Applications of high-resolution 1H solid-state NMR[J]. Solid State Nucl Magn Reson, 2012, 41, 1- 27.
doi: 10.1016/j.ssnmr.2011.11.006 |
6 |
HUNGER M . Brønsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy[J]. Catal Rev Sci Eng, 1997, 39 (4): 345- 393.
doi: 10.1080/01614949708007100 |
7 |
ZHENG A M , HUANG S J , WANG Q , et al. Progress in development and application of solid-state NMR for solid acid catalysis[J]. Chin J Catal, 2013, 34 (3): 436- 491.
doi: 10.1016/S1872-2067(12)60528-2 |
8 | GAO X Z , ZHANG Y , WANG X M , et al. Structure and acidity changes in ultra-stable Y zeolites during hydrothermal aging: A solid state NMR spectroscopy study[J]. Chinese J Magn Reson, 2020, 37 (1): 95- 103. |
高秀枝, 张翊, 王秀梅, 等. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37 (1): 95- 103. | |
9 |
HILL I M , HANSPAL S , YOUNG Z D , et al. DRIFTS of probe molecules adsorbed on magnesia, zirconia, and hydroxyapatite catalysts[J]. J Phys Chem C, 2015, 119 (17): 9186- 9197.
doi: 10.1021/jp509889j |
10 | XU B Q , YAMAGUCHI T , TANABE K . Acid-base bifunctional behavior of ZrO2 in dual adsorption of CO2 and NH3[J]. Chem Lett, 1988, (10): 1663- 1666. |
11 |
YU Z W , ZHENG A M , WANG Q , et al. Acidity characterization of solid acid catalysts by solid-state NMR spectroscopy: A review on recent progresses[J]. Chinese J Magn Reson, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001 |
喻志武, 郑安民, 王强, 等. 固体核磁共振研究固体酸催化剂酸性进展[J]. 波谱学杂志, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001 |
|
12 |
LI S H , HUANG S J , SHEN W L , et al. Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy[J]. J Phys Chem C, 2008, 112 (37): 14486- 14494.
doi: 10.1021/jp803494n |
13 |
CHEN K Z , ABDOLRHAMANI M , SHEETS E , et al. Direct detection of multiple acidic proton sites in zeolite HZSM-5[J]. J Am Chem Soc, 2017, 139 (51): 18698- 18704.
doi: 10.1021/jacs.7b10940 |
14 |
YU Z W , ZHENG A M , WANG Q A , et al. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field[J]. Angew Chem Int Ed, 2010, 49 (46): 8657- 8661.
doi: 10.1002/anie.201004007 |
15 |
SU X , XU S T , TIAN P , et al. Investigation of the strong Bronsted acidity in a novel SAPO-type molecular sieve, DNL-6[J]. J Phys Chem C, 2015, 119 (5): 2589- 2596.
doi: 10.1021/jp511670q |
16 |
ZHANG M Z , XU S T , LI J Z , et al. Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: Carbenium ions formation and reaction mechanism[J]. J Catal, 2016, 335, 47- 57.
doi: 10.1016/j.jcat.2015.12.007 |
17 |
WANG Y , ZHUANG J Q , YANG G , et al. Study on the external surface acidity of MCM-22 zeolite: Theoretical calculation and 31P MAS NMR[J]. J Phys Chem B, 2004, 108 (4): 1386- 1391.
doi: 10.1021/jp034989y |
18 |
PENG Y K , YE L , QU J , et al. Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by 31P solid-state NMR: A zinc oxide case study[J]. J Am Chem Soc, 2016, 138 (7): 2225- 2234.
doi: 10.1021/jacs.5b12080 |
19 |
ZHENG A M , LI S H , LIU S B , et al. Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy[J]. Acc Chem Res, 2016, 49 (4): 655- 663.
doi: 10.1021/acs.accounts.6b00007 |
20 |
LUNSFORD J H , ROTHWELL W P , SHEN W . Acid sites in zeolite Y: A solid-state NMR and infrared study using trimethylphosphine as a probe molecule[J]. J Am Chem Soc, 1985, 107 (6): 1540- 1547.
doi: 10.1021/ja00292a015 |
21 | LUNSFORD J H . Characterization of acidity in zeolites and related oxides using trimethylphosphine as a probe[J]. Top Catal, 1997, 4 (1-2): 91- 98. |
22 | ZHENG A M , LIU S B , DENG F . Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules[J]. Solid State Nucl Magn Reson, 2013, 55, 12- 27. |
23 |
ZHENG A M , LIU S B , DENG F . 31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts[J]. Chem Rev, 2017, 117 (19): 12475- 12531.
doi: 10.1021/acs.chemrev.7b00289 |
24 |
OKUHARA T . Water-tolerant solid acid catalysts[J]. Chem Rev, 2002, 102 (10): 3641- 3666.
doi: 10.1021/cr0103569 |
25 |
USHIKUBO T . Recent topics of research and development of catalysis by niobium and tantalum oxides[J]. Catal Today, 2000, 57 (3-4): 331- 338.
doi: 10.1016/S0920-5861(99)00344-2 |
26 |
IGNATCHENKO A , NEALON D G , DUSHANE R , et al. Interaction of water with titania and zirconia surfaces[J]. J Mol Catal A: Chem, 2006, 256 (1-2): 57- 74.
doi: 10.1016/j.molcata.2006.04.031 |
27 |
NOMA R , NAKAJIMA K , KAMATA K , et al. Formation of 5-(hydroxymethyl)furfural by stepwise dehydration over TiO2 with water-tolerant Lewis acid sites[J]. J Phys Chem C, 2015, 119 (30): 17117- 17125.
doi: 10.1021/acs.jpcc.5b03290 |
28 | SANTOS K M A , ALBUQUERQUE E M , INNOCENTI G , et al. The role of Brønsted and water-tolerant Lewis acid sites in the cascade aqueous-phase reaction of triose to lactic acid[J]. Chem Cat Chem, 2019, 11 (13): 3054- 3063. |
29 | CHEN Z , ZHU G S , WU Y , et al. The promotion effect of transition metals on water-tolerant performance of Cu/SiO2 catalysts in hydrogenation reaction[J]. Chemistry Select, 2019, 4 (48): 14063- 14068. |
30 |
TAKAGAKI A . Rational design of metal oxide solid acids for sugar conversion[J]. Catalysts, 2019, 9 (11): 907.
doi: 10.3390/catal9110907 |
31 |
NAKAJIMA K , BABA Y , NOMA R , et al. Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites[J]. J Am Chem Soc, 2011, 133 (12): 4224- 4227.
doi: 10.1021/ja110482r |
32 | JIMENEZ-MORALES I , MORENO-RECIO M , SANTAMARIA-GONZALEZ J , et al. Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural[J]. Appl Catal B: Environ, 2014, 154, 190- 196. |
33 |
HIRUNSIT P , TOYAO T , SIDDIKI S , et al. Origin of Nb2O5 Lewis acid catalysis for activation of carboxylic acids in the presence of a hard base[J]. Chem Phys Chem, 2018, 19 (21): 2848- 2857.
doi: 10.1002/cphc.201800723 |
34 |
HUANG F M , JIANG T Y , DAI H Y , et al. Transformation of glucose to 5-hydroxymethylfurfural over regenerated cellulose supported Nb2O5·nH2O in aqueous solution[J]. Catal Lett, 2020, 150 (9): 2599- 2606.
doi: 10.1007/s10562-020-03160-9 |
35 |
SKRODCZKY K , ANTUNES M M , HAN X Y , et al. Niobium pentoxide nanomaterials with distorted structures as efficient acid catalysts[J]. Commun Chem, 2019, 2, 129.
doi: 10.1038/s42004-019-0231-3 |
36 |
LEAL G F , LIMA S , GRACA I , et al. Design of nickel supported on water-tolerant Nb2O5 catalysts for the hydrotreating of lignin streams obtained from lignin-first biorefining[J]. iScience, 2019, 15, 467- 488.
doi: 10.1016/j.isci.2019.05.007 |
37 |
GUAN W X , CHEN X , JIN S H , et al. Highly stable Nb2O5-Al2O3 composites supported Pt catalysts for hydrodeoxygenation of diphenyl ether[J]. Ind Eng Chem Res, 2017, 56 (47): 14034- 14042.
doi: 10.1021/acs.iecr.7b03736 |
38 |
HARA M . Heterogeneous Lewis acid catalysts workable in water[J]. Bull Chem Soc Jpn, 2014, 87 (9): 931- 941.
doi: 10.1246/bcsj.20140131 |
39 |
BUNIAZET Z , COUBLE J , MAURY S , et al. Acidity of SiO2-supported metal oxides in the presence of H2O using the AEIR method: 2. Adsorption and coadsorption of NH3 and H2O on TiO2/SiO2 catalysts[J]. Langmui, 2020, 36 (45): 13383- 13395.
doi: 10.1021/acs.langmuir.0c01717 |
40 |
CHEN X , HUANG D F , HE L L , et al. Effect of adsorbed water molecules on the surface acidity of niobium and tantalum oxides studied by MAS NMR[J]. J Phys Chem C, 2021, 125 (17): 9330- 9341.
doi: 10.1021/acs.jpcc.1c02230 |
41 | SHYLESH S , THIEL W R . Bifunctional acid-base cooperativity in heterogeneous catalytic reactions: advances in silica supported organic functional groups[J]. Chem Cat Chem, 2011, 3 (2): 278- 287. |
42 |
WALLING C . The acid strength of surfaces[J]. J Am Chem Soc, 1950, 72 (3): 1164- 1168.
doi: 10.1021/ja01159a025 |
43 |
VARTULI J C , SANTIESTEBAN J G , TRAVERSO P , et al. Characterization of the acid properties of tungsten/zirconia catalysts using adsorption microcalorimetry and n-pentane isomerization activity[J]. J Catal, 1999, 187 (1): 131- 138.
doi: 10.1006/jcat.1999.2595 |
44 |
MOREL J P , MARMIER N , HUREL C , et al. Effect of temperature on the acid-base properties of the alumina surface: Microcalorimetry and acid-base titration experiments[J]. J Colloid Interface Sci, 2006, 298 (2): 773- 779.
doi: 10.1016/j.jcis.2006.01.022 |
45 |
FU Y Y , ZHANG L , YUE B , et al. Simultaneous characterization of solid acidity and basicity of metal oxide catalysts via the solid-state NMR technique[J]. J Phys Chem C, 2018, 122 (42): 24094- 24102.
doi: 10.1021/acs.jpcc.8b06827 |
[1] | 陈翰迪,孔海宇,赵侦超,张维萍. 固体核磁共振结合密度泛函理论计算研究SSZ-39分子筛的钠离子落位与铝分布[J]. 波谱学杂志, 2021, 38(4): 543-551. |
[2] | 杨文杰,黄骏. 基于固体核磁共振技术的固体酸结构、酸性及活性分析[J]. 波谱学杂志, 2021, 38(4): 460-473. |
[3] | 夏锡锋,张文静,林芝晔,柯晓康,温玉洁,王芳,陈俊超,彭路明. 氧化物纳米材料表面结构与性质的固体核磁共振波谱研究[J]. 波谱学杂志, 2021, 38(4): 533-542. |
[4] | 王永祥,王强,徐君,夏清华,邓风. 六氟硅酸铵后处理对H-ZSM-5分子筛酸性影响的固体NMR研究[J]. 波谱学杂志, 2021, 38(4): 514-522. |
[5] | 王子春,黄骏,姜怡娇. 五配位铝强化硅铝固体酸的固体核磁共振研究[J]. 波谱学杂志, 2021, 38(4): 552-570. |
[6] | 史朝为,石攀,田长麟. 非天然氨基酸在蛋白质动态特性核磁共振研究中的应用[J]. 波谱学杂志, 2021, 38(4): 523-532. |
[7] | 肖瑶,夏长久,易先锋,刘凤庆,刘尚斌,郑安民. 固体核磁共振技术在锡硅分子筛表征中的应用[J]. 波谱学杂志, 2021, 38(4): 571-584. |
[8] | 高树树,徐舒涛,魏迎旭,刘中民. 固体核磁共振技术在甲醇制烯烃反应中的应用[J]. 波谱学杂志, 2021, 38(4): 433-447. |
[9] | 张之杰, 李端秀, 罗春, 仇汝臣, 邓宗武, 张海禄. 晶体学辅助的2-吡啶甲酸固体13C化学位移理论计算归属[J]. 波谱学杂志, 2020, 37(1): 67-75. |
[10] | 雷振宇, 梁欣苗, 雷友义, 杨丽, 冯继文. 固体核磁共振技术在锂/钠离子电池碳负极中的应用及研究进展[J]. 波谱学杂志, 2020, 37(1): 28-39. |
[11] | 魏令, 张善民. 利用相位步进脉冲消除探头13C NMR背景信号[J]. 波谱学杂志, 2020, 37(1): 123-130. |
[12] | 高秀枝, 张翊, 王秀梅, 张智华, 徐广通. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37(1): 95-103. |
[13] | 冯宗静, 杜亚平, 罗锋, 徐骏. 通过超宽139La固体核磁共振波谱研究层状La(OH)2NO3[J]. 波谱学杂志, 2020, 37(1): 76-85. |
[14] | 王杨, 杨昌菊, 温玉洁, 陈俊超, 杜佳欢, 彭路明. 利用17O固体核磁共振波谱分析Ni/CeO2表面镍离子含量[J]. 波谱学杂志, 2020, 37(1): 52-60. |
[15] | 梁力鑫, 邓风, 侯广进. 固体核磁共振魔角旋转条件下的定量交叉极化技术(英文)[J]. 波谱学杂志, 2020, 37(1): 1-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||