波谱学杂志 ›› 2021, Vol. 38 ›› Issue (4): 552-570.doi: 10.11938/cjmr20212930
收稿日期:
2021-06-30
出版日期:
2021-12-05
发布日期:
2021-08-10
通讯作者:
姜怡娇
E-mail:yijiao.jiang@mq.edu.au
Zi-chun WANG1,Jun HUANG2,Yi-jiao JIANG1,*()
Received:
2021-06-30
Online:
2021-12-05
Published:
2021-08-10
Contact:
Yi-jiao JIANG
E-mail:yijiao.jiang@mq.edu.au
Supported by:
摘要:
Brønsted酸(B酸)是无定型硅铝(ASAs)表面最重要的催化活性位点.通常认为B酸位的形成只依赖于不饱和四配位铝(AlIV),且仅具有弱B酸性.通过合成五配位铝(AlV)富集的ASAs能够大幅提升高铝硅比(Al/Si)时的B酸含量及强度,克服传统AlIV富集的ASAs的酸性强化瓶颈.本文介绍了AlV在ASAs酸性强化及合成单原子催化剂中的重要作用.通过采用多种二维固体核磁共振(SSNMR)及原位质子NMR技术,证明了AlV能够大量富集在ASAs表面,着重介绍了两种基于AlV的新B酸位的形成机制,并阐明了AlV诱导单原子催化剂在ASAs表面形成的机理.
中图分类号:
王子春,黄骏,姜怡娇. 五配位铝强化硅铝固体酸的固体核磁共振研究[J]. 波谱学杂志, 2021, 38(4): 552-570.
Zi-chun WANG,Jun HUANG,Yi-jiao JIANG. Solid-State NMR Spectroscopy Studies of Enhanced Acidity of Silica-Aluminas Based on Penta-Coordinated Aluminum Species[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 552-570.
表2
ASAs及脱铝H-Y沸石(De-Al-HY)的酸性、比表面积及催化苯甲酰甲醛(phenylglyoxal, PG)合成扁桃酸乙酯(ethyl mandelate, EM)的反应性能
Position | Catalyst | ABET/(m2/g) a | YEM/% b | SEM/% b | BAS/(mmol/g) c | LAS/(mmol/g) c | TOFs/h-1 b |
1 | SA/0 | 156 | 0 | 0 | 0 | 0 | 0 |
2 | SA/10 | 377 | 56 | 93 | 0.098 | 0 | 10.2 |
3 | SA/30 | 248 | 67 | 94 | 0.111 | 0 | 10.5 |
4 | SA/50 | 222 | 81 | 95 | 0.134 | 0.003 | 10.5 |
5 | SA/70 | 200 | 97 | 97 | 0.151 | 0.008 | 10.5 |
6 | De-Al-HY | 671 | 81 | 90 | 0.865 | 1.75 | 0.57 |
1 |
CORMA A . Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chem Rev, 1995, 95, 559- 614.
doi: 10.1021/cr00035a006 |
2 |
BUSCA G . Acid catalysts in industrial hydrocarbon chemistry[J]. Chem Rev, 2007, 107, 5366- 5410.
doi: 10.1021/cr068042e |
3 |
LI Y , LI L , YU J H . Applications of zeolites in sustainable chemistry[J]. Chem, 2017, 3, 928- 949.
doi: 10.1016/j.chempr.2017.10.009 |
4 |
WANG Z C , LING H J , SHI J , et al. Acidity enhanced[Al]MCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam[J]. J Catal, 2018, 358, 71- 79.
doi: 10.1016/j.jcat.2017.11.013 |
5 |
WANG Z C , WANG L , ZHOU Z , et al. Benzylation of arenes with benzyl chloride over H-Beta zeolite: Effects from acidity and shape-selectivity[J]. J Phys Chem C, 2017, 121 (28): 15248- 15255.
doi: 10.1021/acs.jpcc.7b04335 |
6 |
WANG Z C , JIANG Y J , YI X F , et al. High population and dispersion of pentacoordinated AlV species on the surface of flame-made amorphous silica-alumina[J]. Sci Bull, 2019, 64 (8): 516- 523.
doi: 10.1016/j.scib.2019.04.002 |
7 |
WANG Z C , JIANG Y J , LAfon O , et al. Brønsted acid sites based on penta-coordinated aluminum species[J]. Nat Commun, 2016, 7, 13820.
doi: 10.1038/ncomms13820 |
8 |
WANG Z C , LI T , JIANG Y , et al. Acidity enhancement through synergy of penta- and tetra-coordinated aluminum species in amorphous silica networks[J]. Nat Commun, 2020, 11, 225.
doi: 10.1038/s41467-019-13907-7 |
9 |
WANG Z C , JIANG Y , JIN F Z , et al. Strongly enhanced acidity and activity of amorphous silica-alumina by formation of pentacoordinated AlV species[J]. J Catal, 2019, 372, 1- 7.
doi: 10.1016/j.jcat.2019.02.007 |
10 |
HUANG J , VAN VEGTEN N , JIANG Y J , et al. Increasing the Brønsted acidity of flame-derived silica/alumina up to zeolitic strength[J]. Angew Chem Int Ed, 2010, 122 (42): 7942- 7947.
doi: 10.1002/ange.201003391 |
11 | GAO X Z , ZHANG Y , WANG X M , et al. Structure and acidity changes in ultra-stable Y zeolites during hydrothermal aging: A solid-state NMR spectroscopy study[J]. Chinese J Magn Reson, 2020, 37 (1): 95- 103. |
高秀枝, 张翊, 王秀梅, 等. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37 (1): 95- 103. | |
12 |
YANG W J , HUANG J . Solid-state nuclear magnetic resonance spectroscopy-based analysis of local structure, acidic property, and activity for solid acids solid-state nuclear magnetic resonance spectroscopy-based analysis of local structure and acidic property for solid acids[J]. Chinese J Magn Reson,
doi: 10.11938/cjmr20212913 |
杨文杰, 黄骏. 基于固体核磁共振技术的固体酸结构、酸性及活性分析[J]. 波谱学杂志,
doi: 10.11938/cjmr20212913 |
|
13 |
YU Z W , ZHENG A M , WANG Q , et al. Acidity characterization of solid acid catalysts by solid- state NMR spectroscopy: A review on recent progresses[J]. Chinese J Magn Reson, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001 |
喻志武, 郑安民, 王强, 等. 固体核磁共振研究固体酸催化剂酸性进展[J]. 波谱学杂志, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001 |
|
14 |
HUNGER M , FREUDE D , PFEIFER H , et al. High-resolution proton magnetic-resonance and catalytic studies concerning Brønsted centers of amorphous Al2O3-SiO2 solids[J]. Chem Phys Lett, 1983, 100 (1): 29- 33.
doi: 10.1016/0009-2614(83)87256-X |
15 |
CHIZALLET C , RAYBAUD P . Pseudo-bridging silanols as versatile Brønsted acid sites of amorphous aluminosilicate surfaces[J]. Angew Chem Int Ed, 2009, 121 (16): 2935- 2937.
doi: 10.1002/ange.200804580 |
16 |
DUEVEL A , ROMANOVA E , SHARIFI M , et al. Mechanically induced phase transformation of gamma-Al2O3 into alpha-Al2O3. Access to structurally disordered gamma-Al2O3 with a controllable amount of pentacoordinated Al sites[J]. J Phys Chem C, 2011, 115, 22770- 22780.
doi: 10.1021/jp206077r |
17 |
KELLER T C , ARRAS J , HAUS M O , et al. Synthesis-property-performance relationships of amorphous silica-alumina catalysts for the production of methylenedianiline and higher homologues[J]. J Catal, 2016, 344, 757- 767.
doi: 10.1016/j.jcat.2016.08.016 |
18 |
MOUAT A R , GEORGE C , KOBAYASHI T , et al. Highly dispersed SiOx/Al2O3 catalysts illuminate the reactivity of isolated silanol sites[J]. Angew Chem Int Ed, 2015, 54 (45): 13346- 13351.
doi: 10.1002/anie.201505452 |
19 |
VALLA M , ROSSINI A J , CAILLOT M , et al. Atomic description of the interface between silica and alumina in aluminosilicates through dynamic nuclear polarization surface-enhanced NMR spectroscopy and first-principles calculations[J]. J Am Chem Soc, 2015, 137 (33): 10710- 10719.
doi: 10.1021/jacs.5b06134 |
20 |
WISCHERT R , LAURENT P , COPERET C , et al. γ-Alumina: The essential and unexpected role of water for the structure, stability, and reactivity of "defect" sites[J]. J Am Chem Soc, 2012, 134 (35): 14430- 14449.
doi: 10.1021/ja3042383 |
21 |
CHUPAS P J , CHAPMAN K W , HALDER G J . Elucidating the structure of surface acid sites on gamma-Al2O3[J]. J Am Chem Soc, 2011, 133 (22): 8522- 8524.
doi: 10.1021/ja2029574 |
22 |
DENG H , YU Y B , LIU F D , et al. Nature of Ag species on Ag/gamma-Al2O3: A combined experimental and theoretical study[J]. ACS Catal, 2014, 4 (8): 2776- 2784.
doi: 10.1021/cs500248a |
23 |
DUAN H M , YOU R , XU S T , et al. Pentacoordinated Al3+-stabilized active Pd structures on Al2O3-coated palladium catalysts for methane combustion[J]. Angew Chem, 2019, 58 (35): 12043- 12048.
doi: 10.1002/anie.201904883 |
24 |
SHI L , DENG G M , LI W C , et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angew Chem Int Ed, 2015, 54 (47): 13994- 13998.
doi: 10.1002/anie.201507119 |
25 |
WANG Z C , JIANG Y J , STAMPFL C , et al. NMR spectroscopic characterization of flame-made amorphous silica-alumina for cyclohexanol and glyceraldehyde conversion[J]. ChemCatChem, 2020, 12 (1): 287- 293.
doi: 10.1002/cctc.201901728 |
26 |
WANG Z C , JIANG Y J , BAIKER A , et al. Efficient acid-catalyzed conversion of phenylglyoxal to mandelates on flame-derived silica/alumina[J]. ACS Catal, 2013, 3 (7): 1573- 1577.
doi: 10.1021/cs400271e |
27 |
ZHAO Y T , WANG L Z , KOCHUBEI A , et al. Formation and location of Pt single sites induced by pentacoordinated Al species on amorphous silica-alumina[J]. J Phys Chem Lett, 2021, 12 (10): 2536- 2546.
doi: 10.1021/acs.jpclett.1c00139 |
28 |
KIM K D , POKHREL S , WANG Z C , et al. Tailoring high-performance Pd catalysts for chemoselective hydrogenation reactions via optimizing the parameters of the double-flame spray pyrolysis[J]. ACS Catal, 2016, 6 (4): 2372- 2381.
doi: 10.1021/acscatal.6b00396 |
29 |
WANG Z C , POKHREL S , CHEN M M , et al. Palladium-doped silica-alumina catalysts obtained from double-flame FSP for chemoselective hydrogenation of the model aromatic ketone acetophenone[J]. J Catal, 2013, 302, 10- 19.
doi: 10.1016/j.jcat.2013.02.017 |
30 |
KOIRALA R , PRATSINIS S E , BAIKER A . Synthesis of catalytic materials in flames: opportunities and challenges[J]. Chem Soc Rev, 2016, 45, 3053- 3068.
doi: 10.1039/C5CS00011D |
31 |
AMOUREUX J P , FERNANDEZ C , STEUERNAGEL S . Z filtering in MQMAS NMR[J]. J Magn Reson Ser A, 1996, 123, 116- 118.
doi: 10.1006/jmra.1996.0221 |
32 |
WILLIAMS M F , FONFE B , SIEVERS C , et al. Hydrogenation of tetralin on silica-alumina-supported Pt catalysts I. Physicochemical characterization of the catalytic materials[J]. J Catal, 2007, 251 (2): 485- 496.
doi: 10.1016/j.jcat.2007.06.009 |
33 | MACKENZIE K J D , TEMUUJIN J , OKADA K . Thermal decomposition of mechanically activated gibbsite[J]. Thermochimica Acta, 1999, 327 (1, 2): 103- 108. |
34 |
WOUTERS B H , CHEN T H , GROBET P J . Reversible tetrahedral-octahedral framework aluminum transformation in zeolite Y[J]. J Am Chem Soc, 1998, 120 (44): 11419- 11425.
doi: 10.1021/ja982082l |
35 |
OMEGNA A , VAN BOKHOVEN J A , PRINS R . Flexible aluminum coordination in alumino-silicates. Structure of zeolite H-USY and amorphous silica-alumina[J]. J Phys Chem B, 2003, 107, 8854- 8860.
doi: 10.1021/jp030094+ |
36 |
DEWITTE B M , GROBET P J , UYTTERHOEVEN J B . Pentacoordinated aluminum in noncalcined amorphous aluminosilicates, prepared in alkaline and acid-medium[J]. J Phys Chem, 1995, 99 (18): 6961- 6965.
doi: 10.1021/j100018a031 |
37 | HUNGER M . Solid-state NMR spectroscopy[M]. Heidelberg: Springer, 2009. |
38 |
XU J , WANG Q , DENG F . Metal active sites and their catalytic functions in zeolites: Insights from solid-state NMR spectroscopy[J]. Acc Chem Res, 2019, 52 (8): 2179- 2189.
doi: 10.1021/acs.accounts.9b00125 |
39 |
ZHENG A M , LI S H , LIU S B , et al. Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy[J]. Acc Chem Res, 2016, 49 (4): 655- 663.
doi: 10.1021/acs.accounts.6b00007 |
40 |
CHEN K , HORSTMEIER S , NGUYEN V T , et al. Structure and catalytic characterization of a second framework Al(IV) site in zeolite catalysts revealed by NMR at 35.2 T[J]. J Am Chem Soc, 2020, 142 (16): 7514- 7523.
doi: 10.1021/jacs.0c00590 |
41 |
PERRAS F A , WANG Z , KOBAYASHI T , et al. Shedding light on the atomic-scale structure of amorphous silica-alumina and its Brønsted acid sites[J]. Phys Chem Chem Phys, 2019, 21, 19529- 19537.
doi: 10.1039/C9CP04099D |
42 |
YANG W J , WANG Z C , HUANG J , et al. Qualitative and quantitative analysis of acid properties for solid acids by solid-state nuclear magnetic resonance spectroscopy[J]. J Phys Chem C, 2021, 125 (19): 10179- 10197.
doi: 10.1021/acs.jpcc.1c01887 |
43 |
HAW J F , NICHOLAS J B , XU T , et al. Physical organic chemistry of solid acids: Lessons from in situ NMR and theoretical chemistry[J]. Acc Chem Res, 1996, 29 (6): 259- 267.
doi: 10.1021/ar950105k |
44 |
WANG Z C , JIANG Y J , RACHWALIK R , et al. One-step room-temperature synthesis of Al-MCM-41 materials for the catalytic conversion of phenylglyoxal to ethylmandelate[J]. Chemcatchem, 2013, 5 (12): 3889- 3896.
doi: 10.1002/cctc.201300375 |
45 |
WANG Z C , WANG L Z , JIANG Y J , et al. Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration[J]. ACS Catal, 2014, 4 (4): 1144- 1147.
doi: 10.1021/cs401225k |
46 |
LI S H , ZHENG A M , SU Y C , et al. Brønsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study[J]. J Am Chem Soc, 2007, 129 (36): 11161- 11171.
doi: 10.1021/ja072767y |
47 |
STEBBINS J F , XU Z . NMR evidence for excess non-bridging oxygen in an aluminosilicate glass[J]. Nat, 1997, 390, 60- 62.
doi: 10.1038/36312 |
48 |
HUANG J , JIANG Y J , MARTHALA V R R , et al. Regioselective H/D exchange at the side-chain of ethylbenzene on dealuminated zeolite H-Y studied by in situ MAS NMR-UV/Vis spectroscopy[J]. ChemPhysChem, 2008, 9 (8): 1107- 1109.
doi: 10.1002/cphc.200800065 |
49 |
HUANG J , JIANG Y J , MARTHALA V R R , et al. In situ H-1 MAS NMR investigations of the H/D exchange of alkylaromatic hydrocarbons on zeolites H-Y, La, Na-Y, and H-ZSM-5[J]. Microporous Mesoporous Mater, 2007, 99, 86- 90.
doi: 10.1016/j.micromeso.2006.06.041 |
50 |
HUANG J , JIANG Y J , MARTHALA V R R , et al. Insight into the mechanisms of the ethylbenzene disproportionation: Transition state shape selectivity on zeolites[J]. J Am Chem Soc, 2008, 130 (38): 12642- 12644.
doi: 10.1021/ja8042849 |
51 |
BECK L W , XU T , NICHOLAS J B , et al. Kinetic NMR and density-functional study of benzene H/D exchange in zeolites, The most simple aromatic-substitution[J]. J Am Chem Soc, 1995, 117 (46): 11594- 11595.
doi: 10.1021/ja00151a031 |
52 |
ZENG X , WANG Z C , DING J , et al. Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity[J]. J Catal, 2019, 380, 9- 20.
doi: 10.1016/j.jcat.2019.09.035 |
53 |
CORMA A , IBORRA S , VELTY A . Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007, 107 (6): 2411- 2502.
doi: 10.1021/cr050989d |
54 |
PESCARMONA P P , JANSSEN K P F , DELAET C , et al. Zeolite-catalysed conversion of C(3) sugars to alkyl lactates[J]. Green Chem, 2010, 12 (6): 1083- 1089.
doi: 10.1039/b921284a |
55 |
KIM K D , WANG Z C , JIANG Y J , et al. The cooperative effect of Lewis and Brønsted acid sites on Sn-MCM-41 catalysts for the conversion of 1, 3-dihydroxyacetone to ethyl lactate[J]. Green Chem, 2019, 21 (12): 3383- 3393.
doi: 10.1039/C9GC00820A |
56 |
WANG C , CHU Y Y , XU J , et al. Extra-framework aluminum-assisted initial C−C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5[J]. Angew Chem Int Ed, 2018, 57 (32): 10197- 10201.
doi: 10.1002/anie.201805609 |
57 |
WANG Z C , O'DELL L A , ZENG X , et al. Insight into three-coordinate aluminum species on ethanol-to-olefin conversion over ZSM-5 zeolites[J]. Angew Chem Int Ed, 2019, 131 (50): 18229- 18236.
doi: 10.1002/ange.201910987 |
58 |
DAPSENS P Y , MONDELLI C , PEREZ-RAMIREZ J . Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid[J]. ChemSusChem, 2013, 6 (5): 831- 839.
doi: 10.1002/cssc.201200703 |
59 |
DE CLIPPEL F , DUSSELIER M , VAN ROMPAEY R , et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts[J]. J Am Chem Soc, 2012, 134 (24): 10089- 10101.
doi: 10.1021/ja301678w |
60 |
MORENO-RECIO M , SANTAMARIA-GONZALEZ J , MAIRELES-TORRES P . Brønsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural[J]. Chem Eng J, 2016, 303, 22- 30.
doi: 10.1016/j.cej.2016.05.120 |
61 |
XU B , SIEVERS C , LERCHER J A , et al. Strong Brønsted acidity in amorphous silica−aluminas[J]. J Phys Chem C, 2007, 111 (32): 12075- 12079.
doi: 10.1021/jp073677i |
62 |
WANG Z C , JIANG Y J , HUNGER M , et al. Catalytic performance of Brønsted and Lewis acid sites in phenylglyoxal conversion on flame-derived silica-zirconia[J]. ChemCatChem, 2014, 6 (10): 2970- 2975.
doi: 10.1002/cctc.201402397 |
63 |
JONES J , XIONG H F , DELARIVA A T , et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353 (6295): 150- 154.
doi: 10.1126/science.aaf8800 |
64 |
YANG M , LI S , WANG Y , et al. Catalytically active Au-O(OH)(x)-species stabilized by alkali ions on zeolites and mesoporous oxides[J]. Science, 2014, 346 (6216): 1498- 1501.
doi: 10.1126/science.1260526 |
65 |
ZHAO D , ZHUANG Z W , CAO X , et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation[J]. Chem Soc Rev, 2020, 49, 2215- 2264.
doi: 10.1039/C9CS00869A |
66 |
ZUO Z J , LIU S Z , WANG Z C , et al. Dry reforming of methane on single-site Ni/MgO catalysts: Importance of site confinement[J]. ACS Catal, 2018, 8 (10): 9821- 9835.
doi: 10.1021/acscatal.8b02277 |
67 |
WANG A Q , LI J , ZHANG T . Heterogeneous single-atom catalysis[J]. Nat Rev Chem, 2018, 2, 65- 81.
doi: 10.1038/s41570-018-0010-1 |
68 |
CHOI C H , KIM M , KWON H C , et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nat Commun, 2016, 7, 10922.
doi: 10.1038/ncomms10922 |
69 |
QU Y T , LI Z J , CHEN W X , et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms[J]. Nat Catal, 2018, 1, 781- 786.
doi: 10.1038/s41929-018-0146-x |
70 |
KWAK J H , HU J Z , MEI D H , et al. Coordinatively unsaturated Al3+centers as binding sites for active catalyst phases of platinum on gamma-Al2O3[J]. Science, 2009, 325 (5948): 1670- 1673.
doi: 10.1126/science.1176745 |
71 | SPIEKER W A , LIU J , MILLER J T , et al. An EXAFS study of the co-ordination chemistry of hydrogen hexachloroplatinate(IV): 1. Speciation in aqueous solution[J]. Appl Catal A Gen, 2002, 232 (1, 2): 219- 235. |
72 |
ANDREW E R , BRADBURY A , EADES R G . Nuclear magnetic resonance spectra from a crystal rotated at high speed[J]. Nat, 1958, 182, 1659- 1659.
doi: 10.1038/1821659a0 |
73 | STEJSKAL E O , MEMORY J D . High resolution NMR in the solid state[M]. New York: Oxford University Press, 1994. |
74 |
SHELIMOV B , LAMBERT J F , CHE M , et al. Initial steps of the alumina-supported platinum catalyst preparation: A molecular study by 195Pt NMR, UV-Visible, EXAFS, and Raman spectroscopy[J]. J Catal, 1999, 185 (2): 462- 478.
doi: 10.1006/jcat.1999.2527 |
75 |
VALDIVIÉS-CRUZ K , LAM A , ZICOVICH-WILSON C M . Full mechanism of zeolite dealumination in aqueous strong acid medium: Ab initio periodic study on H-Clinoptilolite[J]. J Phys Chem C, 2017, 121 (5): 2652- 2660.
doi: 10.1021/acs.jpcc.6b09794 |
76 | LI S H , ZHENG A M , SU Y C , et al. Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations[J]. Phys Chem Chem Phys, 2010, 12 (5): 3895- 3903. |
77 |
HUNGER M , FREUDE D , PFEIFER H . Magic-angle spinning nuclear-magnetic-resonance studies of water-molecules adsorbed on Brønsted-acid and Lewis-acid sites in zeolites and amorphous silica-aluminas[J]. J Chem Soc Faraday Trans, 1991, 87 (4): 657- 662.
doi: 10.1039/FT9918700657 |
78 |
WANG Q , LI W Z , HUNG I , et al. Mapping the oxygen structure of γ-Al2O3 by high-field solid-state NMR spectroscopy[J]. Nat Commun, 2020, 11, 3620.
doi: 10.1038/s41467-020-17470-4 |
79 |
KIM K D , WANG Z C , TAO Y W , et al. The comparative effect of particle size and support acidity on hydrogenation of aromatic ketones[J]. ChemCatChem, 2019, 11 (19): 4810- 4817.
doi: 10.1002/cctc.201900993 |
[1] | SUTRISNO Andre, 黄忆宁*. 应用多核固体核磁共振光谱与量子化学计算的方法研究层状的过渡金属硫化物[J]. 波谱学杂志, 2013, 30(4): 461-487. |
[2] | 喻志武, 郑安民, 王强, 黃信炅, 邓风, 刘尚斌. 固体核磁共振研究固体酸催化剂酸性进展[J]. 波谱学杂志, 2010, 27(4): 485-515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||