1 |
YANG P D . Crystal cuts on the nanoscale[J]. Nature, 2012, 482, 41- 42.
doi: 10.1038/482041a
|
2 |
LI Y , SHEN W J . Morphology-dependent nanocatalysts: rod-shaped oxides[J]. Chem Soc Rev, 2014, 43 (5): 1543- 1574.
doi: 10.1039/C3CS60296F
|
3 |
XIE X W , LI Y , LIU Z Q , et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458 (7239): 746- 749.
doi: 10.1038/nature07877
|
4 |
ZHOU K B , LI Y D . Catalysis based on nanocrystals with well-defined facets[J]. Angew Chem Int Ed, 2012, 51 (3): 602- 613.
doi: 10.1002/anie.201102619
|
5 |
LI Y H , WU X P , JIANG N X , et al. Distinguishing faceted oxide nanocrystals with 17O solid-state NMR spectroscopy[J]. Nat Commun, 2017, 8, 581.
doi: 10.1038/s41467-017-00603-7
|
6 |
Chapter 7: Basics of X-ray diffraction[M]. Scintag, Inc, 1999.
|
7 |
DU J H , PENG L M . Recent progress in investigations of surface structure and properties of solid oxide materials with nuclear magnetic resonance spectroscopy[J]. Chin Chem Lett, 2018, 29 (6): 747- 751.
doi: 10.1016/j.cclet.2018.02.012
|
8 |
VOGT T, DAHMEN W, BINEV P. Modeling nanoscale imaging in electron microscopy[M]. Springer, 2012.
|
9 |
MARCHETTI A , CHEN J , PANG Z F , et al. Understanding surface and interfacial chemistry in functional nanomaterials via solid-state NMR[J]. Adv Mater, 2017, 29 (14): 1605895.
doi: 10.1002/adma.201605895
|
10 |
LEVITT M H. Spin dynamics: basics of nuclear magnetic resonance[M]. Second edition, John Wiley & Sons, Ltd, 2008.
|
11 |
PENG L M , LIU Y , KIM N , et al. Detection of Bronsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques[J]. Nat Mater, 2005, 4, 216- 219.
doi: 10.1038/nmat1332
|
12 |
ZHENG A M , LI S H , LIU S B , et al. Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy[J]. Acc Chem Res, 2016, 49 (4): 655- 663.
doi: 10.1021/acs.accounts.6b00007
|
13 |
ZHENG A M , LIU S B , DENG F . 31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts[J]. Chem Rev, 2017, 117 (19): 12475- 12531.
doi: 10.1021/acs.chemrev.7b00289
|
14 |
MACKENZIE K J D, SMITH M E. Multinuclear solid-state NMR of inorganic materials[M]. Pergamon, 2002.
|
15 |
WANG M , WU X P , ZHENG S J , et al. Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy[J]. Sci Adv, 2015, 1 (1): e1400133.
doi: 10.1126/sciadv.1400133
|
16 |
CHEN J C , WU X P , HOPE M A , et al. Polar surface structure of oxide nanocrystals revealed with solid-state NMR spectroscopy[J]. Nat Commun, 2019, 10, 5420.
doi: 10.1038/s41467-019-13424-7
|
17 |
CHEN J C , HOPE M A , LIN Z Y , et al. Interactions of oxide surfaces with water revealed with solid-state NMR spectroscopy[J]. J Am Chem Soc, 2020, 142 (25): 11173- 11182.
doi: 10.1021/jacs.0c03760
|
18 |
SHEN L , WANG Y , DU J H , et al. Probing interactions of γ-alumina with water via multinuclear solids-state NMR spectroscopy[J]. Chem Cat Chem, 2020, 12 (6): 1569- 1574.
|
19 |
CHAMPOURET Y , COPPEL Y , KAHN M L . Evidence for core oxygen dynamics and exchange in metal oxide nanocrystals from in situ 17O MAS NMR[J]. J Am Chem Soc, 2016, 138 (50): 16322- 16328.
doi: 10.1021/jacs.6b08769
|
20 |
XU M , CHEN J C , WEN Y J , et al. 17O solid-state NMR studies of Ta2O5 nanorods[J]. ACS Omega, 2020, 5 (14): 8355- 8361.
doi: 10.1021/acsomega.0c00874
|
21 |
SHEN L , WU X P , WANG Y , et al. 17O solid-state NMR studies of ZrO2 nanoparticles[J]. J Phys Chem C, 2019, 123 (7): 4158- 4167.
doi: 10.1021/acs.jpcc.8b11091
|
22 |
LI Y H , WU X P , LIU C . NMR and EPR studies of partially reduced TiO2[J]. Acta Phys Chim Sin, 2020, 36 (4): 1905021.
|
23 |
WANG Q , LI W Z , HUNG I , et al. Mapping the oxygen structure of gamma-Al2O3 by high-field solid-state NMR spectroscopy[J]. Nat Commun, 2020, 11, 3620.
doi: 10.1038/s41467-020-17470-4
|
24 |
LIU L , CHEN X B . Titanium dioxide nanomaterials: Self-structural modifications[J]. Chem Rev, 2014, 114 (19): 9890- 9818.
doi: 10.1021/cr400624r
|
25 |
CARVER T R , SLICHTER C P . Polarization of nuclear spins in metals[J]. Phys Rev, 1953, 92, 212- 213.
|
26 |
LESAGE A , LELLI M , GAJAN D , et al. Surface enhanced NMR spectroscopy by dynamic nuclear polarization[J]. J Am Chem Soc, 2010, 132 (44): 15459- 15461.
doi: 10.1021/ja104771z
|
27 |
SONG C , HU K N , JOO C G , et al. TOTAPOL: A biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media[J]. J Am Chem Soc, 2006, 128 (35): 11385- 11390.
doi: 10.1021/ja061284b
|
28 |
REIF B , ASHBROOK S E , EMSLEY L , et al. Solid-state NMR spectroscopy[J]. Nat Rev Methods Primers, 2021, 1, 2.
doi: 10.1038/s43586-020-00002-1
|
29 |
LAFON O , THANKAMONY A S L , ROSAY M , et al. Indirect and direct 29Si dynamic nuclear polarization of dispersed nanoparticles[J]. Chem Commun, 2013, 49 (28): 2864- 2866.
doi: 10.1039/C2CC36170A
|
30 |
BLANC F , SPERRIN L , JEFFERSON D A , et al. Dynamic nuclear polarization enhanced natural abundance 17O spectroscopy[J]. J Am Chem Soc, 2013, 135 (8): 2975- 2978.
doi: 10.1021/ja4004377
|
31 |
PERRAS F A , KOBAYASHI T , PRUSKI M . Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy[J]. J Am Chem Soc, 2015, 137 (26): 8336- 8339.
doi: 10.1021/jacs.5b03905
|
32 |
ZHAO X , HOFFBAUER W , SCHMEDT AUF DER GUNNE J , et al. Heteronuclear polarization transfer by symmetry-based recoupling sequences in solid-state NMR[J]. Solid State Nucl Magn Reson, 2004, 26 (2): 57- 64.
doi: 10.1016/j.ssnmr.2003.11.001
|
33 |
HOPE M A , HALAT D M , MAGUSIN P C M M , et al. Surface-selective direct 17O DNP NMR of CeO2 nanoparticles[J]. Chem Commun, 2017, 53, 2142- 2145.
doi: 10.1039/C6CC10145C
|
34 |
VITZTHUM V , MIEVILLE P , CARNEVALE D , et al. Dynamic nuclear polarization of quadrupolar nuclei using cross polarization from protons: surface-enhanced aluminium-27 NMR[J]. Chem Commun, 2012, 48, 1988- 1990.
doi: 10.1039/c2cc15905h
|
35 |
LI W Z , WANG Q , XU J , et al. Probing the surface of γ-Al2O3 by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy[J]. Phys Chem Chem Phys, 2018, 20 (25): 17218- 17225.
doi: 10.1039/C8CP03132K
|