波谱学杂志 ›› 2021, Vol. 38 ›› Issue (4): 474-490.doi: 10.11938/cjmr20212933
肖龙1,2,朱筱磊1,韩叶清1,2,陈世桢1,2,*(),周欣1,2,*()
收稿日期:
2021-07-06
出版日期:
2021-12-05
发布日期:
2021-11-29
通讯作者:
陈世桢,周欣
E-mail:chenshizhen@wipm.ac.cn;xinzhou@wipm.ac.cn
基金资助:
Long XIAO1,2,Xiao-lei ZHU1,Ye-qing HAN1,2,Shi-zhen CHEN1,2,*(),Xin ZHOU1,2,*()
Received:
2021-07-06
Online:
2021-12-05
Published:
2021-11-29
Contact:
Shi-zhen CHEN,Xin ZHOU
E-mail:chenshizhen@wipm.ac.cn;xinzhou@wipm.ac.cn
摘要:
飞速发展的分子影像学在肿瘤的早期诊断及检测中发挥着越来越重要的作用.磁共振成像(MRI)是分子影像学的重要分支,具有其他成像技术不可比拟的优越性和广阔的发展前景.它不需要放射性示踪剂,没有电离辐射,具有高的空间、时间分辨率和组织对比度.近年来,新型磁共振分子探针及成像序列取得了一系列进展,包括环境响应型分子探针、19F成像、129Xe超极化成像以及化学交换饱和转移成像等,进一步拓展了MRI的应用范围.研究和开发靶向性好、弛豫效率高且安全性好的新型多模态MRI造影剂,进一步提高灵敏度是MRI领域的一项重要课题,例如将胶束的特性与一些MRI新方法结合,寻找合适的胶束体系,以提高MRI分子探针的灵敏度;或者引入多模态分子探针,弥补磁共振方法的不足.本文综述了胶束型MRI分子探针核心技术的研究进展与应用,并指出分子影像技术在生物医学工程研究和临床诊断中的重要性.
中图分类号:
肖龙,朱筱磊,韩叶清,陈世桢,周欣. 胶束型磁共振成像分子探针的设计与应用[J]. 波谱学杂志, 2021, 38(4): 474-490.
Long XIAO,Xiao-lei ZHU,Ye-qing HAN,Shi-zhen CHEN,Xin ZHOU. Design and Application of Micellar Magnetic Resonance Imaging Molecular Probe[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 474-490.
表1
一些常用的聚合物作为胶束型MRI造影剂载体的应用概述
胶束链段 | 负载物 | 胶束直径 | 参考文献 |
聚乙二醇/聚丙烯酸-聚己内酯(PEG/PAA-PCL) | T1、T2造影剂及其他 | 100~200 nm | [ |
聚乙二醇-聚N-异丙基丙烯酰胺(PEG-PNIPAM) | T1、T2造影剂及其他 | 50~300 nm | [ |
聚乙二醇-聚赖氨酸(PEG-Plys) | T1、T2造影剂及其他 | 50~200 nm | [ |
聚乙二醇-聚天冬氨酸(PEG-PAsp) | T1造影剂及其他 | 50~200 nm | [ |
聚环氧乙烷-聚N, N-二甲基丙烯酰胺(PEO-PDMA) | T1造影剂 | 70 nm | [ |
脂质体(lipid) | T1、T2造影剂及其他 | 50~300 nm | [ |
图4
G5树枝状大分子的结构及在胶质瘤动物模型中的检测.(a) Dylight680(DL680)与Gd-DOTA或Eu-DOTA-Gly4装载到G5树枝状聚合物结构中.(b) Gd-G5-DL680,注射剂量为0.03 mmol Gd/kg.分别在白光和过滤激发下获得体内光学图像,发射滤光片设置为750 nm,用来分辨神经胶质瘤中的荧光.(c)大鼠脑的离体荧光成像清楚地显示Gd-G5-DL680在肿瘤内的选择性积累.(d)肿瘤以白色虚线圆圈表示.(e)覆盖在X射线图像上的大鼠头部的体内荧光图像显示脑中U87肿瘤中存在Eu-DOTA-Gly4-G5-DL680纳米颗粒.(f)冠状位磁共振图像显示U87肿瘤的位置.(g)全脑的离体荧光图像也检测到大脑中的纳米颗粒.(h)离体荧光图像叠加在磁共振图像上,以显示纳米颗粒位于U87神经胶质瘤中[55]
表2
一些主要的环境敏感性的重复单元结构及环境响应类型
聚合物名称 | 重复单元结构 | 类型 | 响应范围 |
聚(N-乙烯基吡啶) Poly(N-vinyl pyridine) | | pH敏感型 | pH:3~5 |
聚(丙烯酸) Poly(Acrylic acid) | | pH敏感型 | pH:5~7 |
葡聚糖Dextran | | pH敏感型 | pH:3~5 |
聚(L-天冬氨酸) Poly(L-aspartic acid) | | pH敏感型 | pH:6~8 |
聚(L-组氨酸) Poly(L-histidine) | | pH敏感型 | pH:5~7 |
聚己内酯Poly(ε-carprolactone) | | pH及温度敏感型 | pH:5~7 T:35~40 ℃ |
聚(异丙基丙烯酰胺)Poly(Isopropyl-acrylamide) | | 温度敏感型 | T:35~40 ℃ |
聚(丙交酯-共-乙交酯)Poly(Lacide-co-glycolide) | | 温度敏感型 | T:30~40 ℃ |
1 |
WEISSLEDER R , MAHMOOD U . Molecular imaging[J]. Radiol, 2001, 219 (2): 316- 333.
doi: 10.1148/radiology.219.2.r01ma19316 |
2 | BADER H , RINGSDORF H , SCHMIDT B . Watersoluble polymers in medicine[J]. Macromol Mater Eng, 1984, 123 (1): 457- 485. |
3 |
YANG L J , ZHANG C R , LIU J J , et al. ICG-conjugated and 125I-labeled polymeric micelles with high biosafety for multimodality imaging-guided photothermal therapy of tumors[J]. Adv Healthcare Mater, 2020, 9 (5): 1901616.
doi: 10.1002/adhm.201901616 |
4 |
CAO Y , LIU M , ZHANG K C , et al. Poly(glycerol) used for constructing mixed polymeric micelles as T1 MRI contrast agent for tumor-targeted imaging[J]. Biomacromolecules, 2017, 18 (1): 150- 158.
doi: 10.1021/acs.biomac.6b01437 |
5 |
LU L J , WANG Y , CAO M H , et al. A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke[J]. RSC Advances, 2017, 7 (25): 15041- 15052.
doi: 10.1039/C7RA00345E |
6 |
SU P F , WU H X , WANG Z , et al. Biodegradable catalase-modified micelles as ultrasound contrast agents for inflammation detection[J]. Part Part Syst Charact, 2020, 37 (10): 2000193.
doi: 10.1002/ppsc.202000193 |
7 |
ELSAID Z , TAYLOR K M G , PURI S , et al. Mixed micelles of lipoic acid-chitosan-poly (ethylene glycol) and distearoylphosphatidylethanolamine-poly (ethylene glycol) for tumor delivery[J]. Eur J Pharm Sci, 2017, 101, 228- 242.
doi: 10.1016/j.ejps.2017.02.001 |
8 |
WAN Z A , ZHENG R H , MOHARIL P , et al. Polymeric micelles in cancer immunotherapy[J]. Molecules, 2021, 26 (5): 1220.
doi: 10.3390/molecules26051220 |
9 |
SHEN D , SHEN Y , CHEN Q , et al. Macrophage escape by cholesterol-polyoxyethylene sorbitol oleate micelles for pulmonary delivery[J]. Nanomedicine, 2020, 15 (5): 489- 509.
doi: 10.2217/nnm-2019-0376 |
10 | WANG Z , DENG X P , DING J S , et al. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: A review[J]. Int J Pharm, 2018, 535 (1, 2): 253- 260. |
11 | HONG G B , ZHOU J X , YUAN R X . Folate-targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: combined small size and high MRI sensitivity[J]. Int J Nanomed, 2012, 7, 2863- 2872. |
12 |
GONG F M , ZHANG Z Q , CHEN X D , et al. A dual ligand targeted nanoprobe with high MRI sensitivity for diagnosis of breast cancer[J]. Chinese J Polym Sci, 2014, 32 (3): 321- 332.
doi: 10.1007/s10118-014-1399-8 |
13 |
CUI M Y , DONG Z , CAI H , et al. Folate‑targeted polymeric micelles loaded with superparamagnetic iron oxide as a contrast agent for magnetic resonance imaging of a human tongue cancer cell line[J]. Mol Med Rep, 2017, 16 (5): 7597- 7602.
doi: 10.3892/mmr.2017.7565 |
14 |
XIE X X , CHEN Y , CHEN Z Y , et al. Polymeric hybrid nanomicelles for cancer theranostics: an efficient and precise anticancer strategy for the codelivery of doxorubicin/miR-34a and magnetic resonance imaging[J]. ACS Appl Mater Interfaces, 2019, 11 (47): 43865- 43878.
doi: 10.1021/acsami.9b14908 |
15 |
YAN L , AMIRSHAGHAGHI A , HUANG D , et al. Protoporphyrin IX (PpIX)-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters for magnetic resonance imaging and photodynamic therapy[J]. Adv Funct Mater, 2018, 28 (16): 1707030.
doi: 10.1002/adfm.201707030 |
16 |
DENG L H , JIANG H , LU F L , et al. Size and PEG length-controlled PEGylated monocrystalline superparamagnetic iron oxide nanocomposite for MRI contrast agent[J]. Int J Nanomed, 2021, 16, 201- 211.
doi: 10.2147/IJN.S271461 |
17 |
HEMMATI , K , ALIZADEH R , GHAEMY M . Synthesis and characterization of controlled drug release carriers based on functionalized amphiphilic block copolymers and super-paramagnetic iron oxide nanoparticles[J]. Polym Adv Technol, 2016, 27 (4): 504- 514.
doi: 10.1002/pat.3697 |
18 |
ZHANG X M , GUO K , LI L H , et al. Multi-stimuli-responsive magnetic assemblies as tunable releasing carriers[J]. J Mater Chem B, 2015, 3 (29): 6026- 6031.
doi: 10.1039/C5TB00845J |
19 |
DALMINA M , PITTELLA F , SIERRA J A , et al. Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells[J]. Mater Sci Eng: C, 2019, 99, 1182- 1190.
doi: 10.1016/j.msec.2019.02.026 |
20 | LIN M H , DAI Y , XIA F , et al. Advances in non-covalent crosslinked polymer micelles for biomedical applications[J]. Mater Sci Eng: C, 2020, 119, 111626. |
21 |
QI C , MUSETTI S , FU L H , et al. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications[J]. Chem Soc Rev, 2019, 48 (10): 2698- 2737.
doi: 10.1039/C8CS00489G |
22 |
LIU Y J , LI J S , LIU F X , et al. Theranostic polymeric micelles for the diagnosis and treatment of hepatocellular carcinoma[J]. J Biomed Nanotechnol, 2015, 11 (4): 613- 622.
doi: 10.1166/jbn.2015.1945 |
23 | ZHANG Y H , ZHANG H Y , ZHANG H L , et al. A new Gd-based T2-weighted magnetic resonance imaging contrast agent: Preparation and application in stem cell imaging[J]. Chinese J Magn Reson, 2017, 34 (3): 302- 310. |
张艳辉, 张宏岩, 张海禄, 等. 新型Gd基T2造影剂的制备和应用[J]. 波谱学杂志, 2017, 34 (3): 302- 310. | |
24 |
MA J P , DONG H Q , ZHU H Y , et al. Deposition of gadolinium onto the shell structure of micelles for integrated magnetic resonance imaging and robust drug delivery systems[J]. J Mater Chem B, 2016, 4 (36): 6094- 6102.
doi: 10.1039/C6TB01013J |
25 |
JIANG D D , ZHANG X P , YU D X , et al. Tumor-microenvironment relaxivity-changeable Gd-loaded poly (L-lysine)/carboxymethyl chitosan nanoparticles as cancer-recognizable magnetic resonance imaging contrast agents[J]. J Biomed Nanotechnol, 2017, 13 (3): 243- 254.
doi: 10.1166/jbn.2017.2346 |
26 |
LIU Y J , FENG L X , LIU T X , et al. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer[J]. Nanoscale, 2014, 6 (6): 3231- 3242.
doi: 10.1039/c3nr05647c |
27 |
ZHU D R , LIU F Y , MA L N , et al. Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents[J]. Int J Mol Sci, 2013, 14 (5): 10591- 10607.
doi: 10.3390/ijms140510591 |
28 | ZHAN Y Y , XUE R , ZHU Y L , et al. A biocompatible gadolinium-based amino acid copolymer contrast agent for magnetic resonance imaging[J]. Chinese J Magn Reson, 2016, 33 (4): 635- 645. |
湛游洋, 薛蓉, 祝云龙, 等. 氨基酸共聚物修饰的生物相容性MRI造影剂[J]. 波谱学杂志, 2016, 33 (4): 635- 645. | |
29 |
KUMAGAI M , IMAI Y , NAKAMURA T , et al. Iron hydroxide nanoparticles coated with poly (ethylene glycol)-poly (aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging[J]. Colloids Surf., B, 2007, 56 (1-2): 174- 181.
doi: 10.1016/j.colsurfb.2006.12.019 |
30 |
ZHANG Z Q , SUN Q Q , ZHONG J L , et al. Magnetic resonance imaging-visible and pH-sensitive polymeric micelles for tumor targeted drug delivery[J]. J Biomed Nanotechnol., 2014, 10 (2): 216- 226.
doi: 10.1166/jbn.2014.1729 |
31 |
JIANG B , LIU M , ZHNG K C , et al. Oligoethylenimine grafted PEGylated poly (aspartic acid) as a macromolecular contrast agent: properties and in vivo studies[J]. J Mater Chem B, 2016, 4 (19): 3324- 3330.
doi: 10.1039/C6TB00278A |
32 |
WILSON M P , PATEL D , MURAD M H , et al. Diagnostic performance of MRI in the detection of renal lipid-poor angiomyolipomas: a systematic review and meta-analysis[J]. Radiol, 2020, 296 (3): 511- 520.
doi: 10.1148/radiol.2020192070 |
33 |
SUN J , ZHAO X Q , BALU N , et al. Carotid plaque lipid content and fibrous cap status predict systemic CV outcomes: the MRI substudy in AIM-HIGH[J]. JACC Cardiovasc Imaging, 2017, 10 (3): 241- 249.
doi: 10.1016/j.jcmg.2016.06.017 |
34 |
ALKHALIL M , BIASIOLLI L , AKBAR N , et al. T2 mapping MRI technique quantifies carotid plaque lipid, and its depletion after statin initiation, following acute myocardial infarction[J]. Atherosclerosis, 2018, 279, 100- 106.
doi: 10.1016/j.atherosclerosis.2018.08.033 |
35 |
BASTIAANSEN J A M , STUBER M . Flexible water excitation for fat-free MRI at 3T using lipid insensitive binomial off-resonant RF excitation (LIBRE) pulses[J]. Magn Reson Med, 2018, 79 (6): 3007- 3017.
doi: 10.1002/mrm.26965 |
36 |
ROMEO V , MAUREA S , GUARINO S , et al. The role of dynamic post-contrast T1-w MRI sequence to characterize lipid-rich and lipid-poor adrenal adenomas in comparison to non-adenoma lesions: preliminary results[J]. Abdom Radiol, 2018, 43 (8): 2119- 2129.
doi: 10.1007/s00261-017-1429-4 |
37 |
XIA J , YIN A Y , LI Z Z , et al. Quantitative analysis of lipid-rich necrotic core in carotid atherosclerotic plaques by in vivo magnetic resonance imaging and clinical outcomes[J]. Med Sci Monit, 2017, 23, 2745- 2750.
doi: 10.12659/MSM.901864 |
38 |
LU C Y , JI J S , ZHU X L , et al. T2-weighted magnetic resonance imaging of hepatic tumor guided by SPIO-loaded nanostructured lipid carriers and ferritin reporter genes[J]. ACS Appl Mater Interfaces, 2017, 9 (41): 35548- 35561.
doi: 10.1021/acsami.7b09879 |
39 |
ZHANG Y , UDAYAKUMAR D , CAI L , et al. Addressing metabolic heterogeneity in clear cell renal cell carcinoma with quantitative Dixon MRI[J]. JCI insight, 2017, 2 (15): e94278.
doi: 10.1172/jci.insight.94278 |
40 |
WEINMANN H J , BRASCH R C , PRESS W R , et al. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent[J]. AJR Am J Roentgenol, 1984, 142 (3): 619- 624.
doi: 10.2214/ajr.142.3.619 |
41 |
AKAI H , SHIRAISHI K , YOKOYAMA M , et al. PEG-poly (L-lysine)-based polymeric micelle MRI contrast agent: Feasibility study of a Gd-micelle contrast agent for MR lymphography[J]. J Magn Reson Imaging, 2018, 47 (1): 238- 245.
doi: 10.1002/jmri.25740 |
42 |
ZHANG N N , YU S S , MIN X , et al. Visual targeted therapy of hepatic cancer using homing peptide modified calcium phosphate nanoparticles loading doxorubicin guided by T1 weighted MRI[J]. Nanomed-Nanotechnol, 2018, 14 (7): 2167- 2178.
doi: 10.1016/j.nano.2018.06.014 |
43 |
YAN Q D , DONG X , XIE R Z , et al. Preparation of Mn2+@PolyDOPA-b-polysarcosine micelle as MRI contrast agent with high longitudinal relaxivity[J]. J Macromol Sci A, 2021, 58 (3): 175- 181.
doi: 10.1080/10601325.2020.1840918 |
44 |
JOHNSON N J J , HE S , NGUYEN HUU V A , et al. Compact micellization: a strategy for ultrahigh T1 magnetic resonance contrast with gadolinium-based nanocrystals[J]. ACS Nano, 2016, 10 (9): 8299- 8307.
doi: 10.1021/acsnano.6b02559 |
45 | ARESTEANU R N S , BORODETSKY A , AZHARI H , et al. Ultrasound-induced and MRI-monitored CuO nanoparticles release from micelle encapsulation[J]. Nanotechnology, 2020, 32 (5): 055705. |
46 |
SUN C J , LIN H Y , GONG X Q , et al. DOTA-branched organic frameworks as giant and potent metal chelators[J]. J Am Chem Soc, 2020, 142 (1): 198- 206.
doi: 10.1021/jacs.9b09269 |
47 | WANG Y X J . Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application[J]. Quant Imag Med Surg, 2011, 1 (1): 35- 40. |
48 |
RAY S , LI Z , HSU C H , et al. Dendrimer-and copolymer-based nanoparticles for magnetic resonance cancer theranostics[J]. Theranostics, 2018, 8 (22): 6322- 6349.
doi: 10.7150/thno.27828 |
49 |
YE S , LIU Y , LU Y , et al. Cyclic RGD functionalized liposomes targeted to activated platelets for thrombosis dual-mode magnetic resonance imaging[J]. J Mater Chem B, 2020, 8 (3): 447- 453.
doi: 10.1039/C9TB01834D |
50 |
YAN L , LUO L J , AMIRSHAGHAGHI A , et al. Dextran-benzoporphyrin derivative (BPD) coated superparamagnetic iron oxide nanoparticle (SPION) micelles for T2-weighted magnetic resonance imaging and photodynamic therapy[J]. Bioconjugate Chem, 2019, 30 (11): 2974- 2981.
doi: 10.1021/acs.bioconjchem.9b00676 |
51 |
WARD K M , ALETRAS A H , BALABAN R S . A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143 (1): 79- 87.
doi: 10.1006/jmre.1999.1956 |
52 |
SUN P Z , VAN ZIJL P C M , ZHOU J Y . Optimization of the irradiation power in chemical exchange dependent saturation transfer experiments[J]. J Magn Reson, 2005, 175 (2): 193- 200.
doi: 10.1016/j.jmr.2005.04.005 |
53 | WOESSNER D E , ZHANG S R , MERRITT M E , et al. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI[J]. Magn Reson Med, 2010, 53 (4): 790- 799. |
54 |
FERRAUTO G , BEAUPREZ F , DI GREGORIO E , et al. Development and characterization of lanthanide-HPDO3A-C16-based micelles as CEST-MRI contrast agents[J]. Dalton Trans, 2019, 48 (16): 5343- 5351.
doi: 10.1039/C8DT04621B |
55 | GONAWALA S , ALI M M . Application of dendrimer-based nanoparticles in glioma imaging[J]. J Nanomed Nanotechnol, 2017, 8 (3): 444. |
56 |
ZHANG S R , ZHOU K J , HUANG G , et al. A novel class of polymeric pH-responsive MRI CEST agents[J]. Chem Commun, 2013, 49 (57): 6418- 6420.
doi: 10.1039/c3cc42452a |
57 |
HAN Z , LIU G S . CEST MRI trackable nanoparticle drug delivery systems[J]. Biomed Mater, 2021, 16 (2): 024103.
doi: 10.1088/1748-605X/abdd70 |
58 |
HILL L K , FREZZO J A , KATYAL P , et al. Protein-engineered nanoscale micelles for dynamic 19F magnetic resonance and therapeutic drug delivery[J]. ACS Nano, 2019, 13 (3): 2969- 2985.
doi: 10.1021/acsnano.8b07481 |
59 |
FU C K , DEMIR B , ALCANTARA S , et al. Low-fouling fluoropolymers for bioconjugation and in vivo tracking[J]. Angew Chem Int Ed, 2020, 59 (12): 4729- 4735.
doi: 10.1002/anie.201914119 |
60 |
LI B , CAI M Y , LIN L , et al. MRI-visible and pH-sensitive micelles loaded with doxorubicin for hepatoma treatment[J]. Biomater Sci, 2019, 7 (4): 1529- 1542.
doi: 10.1039/C8BM01501E |
61 | CAI M Y , LV G , YANG Q , et al. MRI-visible and pH-sensitive nanomicelles for targeting delivery of sorafenib to hepatocellular carcinoma[J]. Chinese Journal of Radiology, 2019, 11, 1005- 1011. |
蔡明岳, 吕格, 杨琴, 等. MRI可视化pH敏感纳米胶束用于肝癌靶向输送索拉非尼的可行性[J]. 中华放射学杂志, 2019, 11, 1005- 1011. | |
62 |
ZHOU G Y , XIAO H , LI X X , et al. Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging[J]. Acta Biomater, 2017, 64, 223- 236.
doi: 10.1016/j.actbio.2017.10.018 |
63 |
ZHU X L , TANG X X , LIN H Y , et al. A fluorinated ionic liquid-based activatable 19F MRI platform detects biological targets[J]. Chem, 2020, 6 (5): 1134- 1148.
doi: 10.1016/j.chempr.2020.01.023 |
64 |
YANG H K , MIAO Y L , CHEN Y P , et al. Redox-responsive nanoparticles from disulfide bond-linked poly-(N-ε-carbobenzyloxy-L-lysine)- grafted hyaluronan copolymers as theranostic nanoparticles for tumor-targeted MRI and chemotherapy[J]. Int J Biol Macromol, 2020, 148, 483- 492.
doi: 10.1016/j.ijbiomac.2020.01.071 |
65 |
ZHAI S D , HU X L , HU Y J , et al. Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy[J]. Biomater, 2017, 121, 41- 54.
doi: 10.1016/j.biomaterials.2017.01.002 |
66 |
HSU J C , NAHA P C , LAU K C , et al. An all-in-one nanoparticle (AION) contrast agent for breast cancer screening with DEM-CT-MRI-NIRF imaging[J]. Nanoscale, 2018, 10 (36): 17236- 17248.
doi: 10.1039/C8NR03741H |
67 |
MIURA Y , TSUJI A B , SUGYO A , et al. Polymeric micelle platform for multimodal tomographic imaging to detect scirrhous gastric cancer[J]. ACS Biomater Sci Eng, 2015, 1 (11): 1067- 1076.
doi: 10.1021/acsbiomaterials.5b00142 |
68 | MOUKHEIBER D , CHITGUPI U , CARTER K A , et al. Surfactant-stripped pheophytin micelles for multimodal tumor imaging and photodynamic therapy[J]. ACS Appl Bio Mater, 2018, 2 (1): 544- 554. |
69 |
CARAVAN P . Strategies for increasing the sensitivity of gadolinium-based MRI contrast agents[J]. Chem Soc Rev, 2006, 35 (6): 512- 523.
doi: 10.1039/b510982p |
[1] | 张菊敏,陈世桢,周欣. 基于动态有机钆纳米颗粒的T1-T2双模态MRI造影剂[J]. 波谱学杂志, 2022, 39(1): 11-19. |
[2] | 王志超,张记磊,赵羽,华婷,汤光宇,李建奇. 基于神经网络拟合的腹部化学交换饱和转移成像[J]. 波谱学杂志, 2022, 39(1): 33-42. |
[3] | 王瀚苇,吴昊,田静,张俊峰,钟鹏,陈立朝,王舒楠. T2/FLAIR错配征的定量参数在评价较低级别胶质瘤分子分型的诊断价值[J]. 波谱学杂志, 2022, 39(1): 56-63. |
[4] | 闫士举,韩勇森,汤光宇. 一种用于前列腺区域分割的改进水平集算法[J]. 波谱学杂志, 2021, 38(3): 356-366. |
[5] | 胡赢丹,蔡悦,王旭霞,刘思婕,康彦,雷皓,林富春. 尼古丁易感的脑结构特征的磁共振成像研究[J]. 波谱学杂志, 2021, 38(3): 345-355. |
[6] | 贺红艳, 魏树峰, 王慧贤, 杨文晖. 矩阵梯度线圈研究现状与发展趋势[J]. 波谱学杂志, 2021, 38(1): 140-153. |
[7] | 辛红涛, 吴光耀, 文之, 雷皓, 林富春. 抗逆转录病毒治疗对艾滋病患者脑灰质体积的影响[J]. 波谱学杂志, 2021, 38(1): 69-79. |
[8] | 胡格丽, 邓晔辉, 王坤, 蒋田仔. 5G通信平台下的新型MRI系统架构展望[J]. 波谱学杂志, 2020, 37(4): 490-495. |
[9] | 吴明娣, 冯洁, 贾慧惠, 吴继志, 张欣, 常严, 杨晓冬, 盛茂. 儿童发育性髋关节脱位的磁共振形态学定量[J]. 波谱学杂志, 2020, 37(4): 434-446. |
[10] | 廖志文, 陈俊飞, 杨春升, 张志, 陈黎, 肖立志, 陈方, 刘朝阳. 1H/31P双核并行磁共振成像线圈的研究与设计[J]. 波谱学杂志, 2020, 37(3): 273-282. |
[11] | 周游, 杨洋, 宋立强, 毕田田, 王玥, 赵瑛. 西洋参-石菖蒲对糖尿病认知障碍大鼠学习记忆相关脑区的影响[J]. 波谱学杂志, 2020, 37(3): 332-348. |
[12] | 娄云重, 刘颖, 江华, 章浩伟. 基于MRI和深度学习的桥小脑角区脑膜瘤与听神经瘤分类算法研究[J]. 波谱学杂志, 2020, 37(3): 300-310. |
[13] | 赵尚义, 王远军. 基于磁共振图像和改进的UNet++模型区分阿尔茨海默症患者和健康人群[J]. 波谱学杂志, 2020, 37(3): 321-331. |
[14] | 徐鹏程, 肖亮. 多通道磁共振成像仪控制台数据传输模块设计[J]. 波谱学杂志, 2020, 37(3): 283-290. |
[15] | 刘可文, 刘紫龙, 汪香玉, 陈黎, 李钊, 吴光耀, 刘朝阳. 基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 2020, 37(2): 152-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||