[1] 杨勇. 固态电化学[M]. 北京:化学工业出版社, 2017:266-302. [2] CARLIER D, TRIER M, GREY C P, et al. Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations[J]. Phys Rev B, 2003, 67(17):174103. [3] GREY C P, DUPR N. NMR studies of cathode materials for lithium-ion rechargeable batteries[J]. Chem Rev, 2004, 104(10):4493-4512. [4] KIM J, MIDDLEMISS D S, CHERNOVA N A, et al. Linking local environments and hyperfine shifts:A combined experimental and theoretical 31P and 7Li solid-state NMR study of paramagnetic Fe(III) phosphates[J]. J Am Chem Soc, 2010, 132(47):16825-16840. [5] KNIGHT W D. Nuclear magnetic resonance shift in metals[J]. Phys Rev, 1949, 76(8):1259-1260. [6] CONARD J, ESTRADE H. Resonance magnétique nucléaire du lithium interstitiel dans le Graphite[J]. Materials Science and Engineering, 1977, 31:173-176. [7] ZHANG Z R, YANG Y, LIU H S. Progress in solid-state NMR studies of electrode materials for lithium ion batteries[J]. Progress in Chemistry, 2003, 15(1):18-24.张忠如, 杨勇, 刘汉三. 锂离子电池电极材料固体核磁共振研究进展[J]. 化学进展, 2003, 15(1):18-24. [8] ZHONG G M, HOU X, CHEN S S, et al. Solid-state NMR study of electrode/electrolyte materials for lithium-ion batteries[J]. Chinese Science Bulletin, 2013, 58(32):3287-3300.钟贵明, 侯旭, 陈守顺, 等. 锂离子电池电极/电解质材料的固体核磁共振研究进展[J]. 科学通报, 2013, 58(32):3287-3300. [9] HAYES S, VAN WULLEN L, ECKERT H, et al. Solid-state NMR strategies for the structural investigation of carbon-based anode materials[J]. Chem Mater, 1997, 9(4):901-911. [10] MATSUMURA Y, WANG S, NAKAGAWA Y, et al. An electron-spin resonance study of lithium charged carbon electrodes[J]. Synthetic Met, 1997, 85(1):1411-1412. [11] IMANISHI N, KUMAI K, KOKUGAN H, et al. 7Li-NMR study of carbon fiber and graphite anodes for lithium ion batteries[J]. Solid State Ionics, 1998, 107(1):135-144. [12] SMART M, RATNAKUMAR B, SURAMPUDI S, et al. Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries[J]. J Electrochem Soc, 1999, 146(11):3963-3969. [13] ZAGHIB K, TATSUMI K, SAWADA Y, et al. 7Li-NMR of well-graphitized vapor-grown carbon fibers and natural graphite negative electrodes of rechargeable lithium-ion batteries[J]. J Electrochem Soc, 1999, 146(8):2784-2793. [14] KIM Y O, PARK S M. Intercalation mechanism of lithium ions into graphite layers studied by nuclear magnetic resonance and impedance experiments[J]. J Electrochem Soc, 2001, 148(3):A194-A199. [15] WANG Y, YUFIT V, GUO X, et al. 7Li nuclear magnetic resonance study of lithium insertion in pristine and partially oxidized graphite[J]. J Power Sources, 2001, 94(2):230-237. [16] LETELLIER M, CHEVALLIER F, B GUIN F. In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite[J]. J Phys Chem Solids, 2006, 67(5):1228-1232. [17] LETELLIER M, CHEVALLIER F, MORCRETTE M. In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle[J]. Carbon, 2007, 45(5):1025-1034. [18] LEIFER N, GREENSTEIN M F, MOR A, et al. NMR-detected dynamics of sodium co-intercalation with diglyme solvent molecules in graphite anodes linked to prolonged cycling[J]. J Phys Chem C, 2018, 122(37):21172-21184. [19] YOSHIO M, WANG H, FUKUDA K, et al. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material[J]. J Electrochem Soc, 2000, 147(4):1245-1250. [20] LANGER T, DUPKE S, DIPPEL C, et al. LiBC-synthesis, electrochemical and solid-state NMR investigations[J]. Z Naturforsch B, 2012, 67(11):1212-1220. [21] XING T, RAMIREDDY T, LI L H, et al. Lithium storage in disordered graphitic materials:a semi-quantitative study of the relationship between structure disordering and capacity[J]. Phys Chem Chem Phys, 2015, 17(7):5084-5089. [22] JUNG H, KIM K S, PARK S E, et al. The structural and electrochemical study on the blended anode with graphite and silicon carbon nano composite in Li ion battery[J]. Electrochim Acta, 2017, 245:791-795. [23] PRAMUDITA J C, RAWAL A, CHOUCAIR M, et al. Mechanisms of sodium insertion/extraction on the surface of defective graphenes[J]. ACS Appl Mater Inter, 2017, 9(1):431-438. [24] HARRIS K J, REEVE Z E M, WANG D N, et al. Electrochemical changes in lithium-battery electrodes studied using 7Li NMR and enhanced 13C NMR of graphene and graphitic carbons[J]. Chem Mater, 2015, 27(9):3299-3305. [25] WU Y P, FANG S B, JIANG Y Y. Reversible high storage mechanism of lithium in carbon materials[J]. Chemistry, 1998, 4:15-19.吴宇平, 方世璧, 江英彦. 锂在炭材料中的可逆高储存机理[J]. 化学通报, 1998, 4:15-19. [26] XIANG H Q, FANG S B, JIANG Y Y. Insertion mechanism of lithium in low temperature pyrolyticcarbon materials[J]. Chinese Science Bulletin, 1999, 44(3):235-242.相红旗, 方世璧, 江英彦. 锂在低温热解碳材料中的插入机理[J]. 科学通报, 1999, 44(3):235-242. [27] NAKAGAVVA Y, WANG S, MATSUMURA Y, et al. 7Li-NMR study of lithium charged in carbon electrode[J]. Synthetic Met, 1997, 85(1):1363-1364. [28] TATSUMI K, KAWAMURA T, HIGUCHI S, et al. Anode characteristics of non-graphitizable carbon fibers for rechargeable lithium-ion batteries[J]. J Power Sources, 1997, 68(2):263-266. [29] DAI Y F, WANG Y, GREENBAUM S G, et al. Lithium-7 nuclear magnetic resonance investigation of lithium insertion in hard carbon[J]. J Electrochem Soc, 1998, 145(4):1179-1183. [30] MORI Y, IRIYAMA T, HASHIMOTO T, et al. Lithium doping/undoping in disordered coke carbons[J]. J Power Sources, 1995, 56(2):205-208. [31] YAMAZAKI S, HASHIMOTO T, IRIYAMA T, et al. Study of the states of Li doped in carbons as an anode of LiB by 7Li NMR spectroscopy[J]. J Mol Struct, 1998, 441(2):165-171. [32] JUNG Y, SUH M C, LEE H, et al. Electrochemical insertion of lithium into polyacrylonitrile-based disordered carbons[J]. J Electrochem Soc, 1997, 144(12):4279-4284. [33] JUNG Y, SUH M C, SHIM S C, et al. Lithium insertion into disordered carbons prepared from organic polymers[J]. J Electrochem Soc, 1998, 145(9):3123-3129. [34] GAUTIER S, LEROUX F, FRACKOWIAK E, et al. Influence of the pyrolysis conditions on the nature of lithium inserted in hard carbons[J]. J Phys Chem A, 2001, 105(24):5794-5800. [35] GUERIN K, FEVRIER-BOUVIER A, FLANDROIS S, et al. A 7Li NMR study of a hard carbon as a function of temperature and lithiation state[J]. Mol Cryst Liq Cryst, 2000, 340(1):467-472. [36] GUERIN K, MENETRIER M, FEVRIER-BOUVIER A, et al. A 7Li NMR study of a hard carbon for lithium-ion rechargeable batteries[J]. Solid State Ionics, 2000, 127(3/4):187-198. [37] TATSUMI K, CONARD J, NAKAHARA M, et al. 7Li NMR studies on a lithiated non-graphitizable carbon fibre at low temperatures[J]. Chem Commun, 1997, 7:687-688. [38] TATSUMI K, CONARD J, NAKAHARA M, et al. Low temperature 7Li-NMR investigations on lithium inserted into carbon anodes for rechargeable lithium-ion cells[J]. J Power Sources, 1999, 81-82:397-400. [39] SAITO Y, KATAOKA H, NAKAI K, et al. Determination of diffusion rate and accommodation state of Li in mesophase carbon for anode materials by NMR spectroscopy[J]. J Phys Chem B, 2004, 108(13):4008-4012. [40] LETELLIER M, CHEVALLIER F, CLINARD C, et al. The first in situ 7Li nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries[J]. J Chem Phys, 2003, 118(13):6038-6045. [41] GERALD R E, SANCHEZ J, JOHNSON C S, et al. In situ nuclear magnetic resonance investigations of lithium ions in carbon electrode materials using a novel detector[J]. Journal of Physics:Condensed Matter, 2001, 13(36):8269-8285. [42] SHELLIKERI A, HUNG I, GAN Z H, et al. In situ NMR tracks real-time Li ion movement in hybrid supercapacitor-battery device[J]. J Phys Chem C, 2016, 120(12):6314-6323. [43] GOTOH K, ISHIKAWA T, SHIMADZU S, et al. NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery[J]. J Power Sources, 2013, 225:137-140. [44] MORITA R, GOTOH K, FUKUNISHI M, et al. Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes[J]. J Mater Chem A, 2016, 4(34):13183-13193. [45] STRATFORD J M, ALLAN P K, PECHER O, et al. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes[J]. Chem Commun, 2016, 52(84):12430-12433. [46] QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv Energy Mater, 2017, 7(17):1700403. [47] FUJIMOTO H, MABUCHI A, TOKUMITSU K, et al. 7Li nuclear magnetic resonance studies of hard carbon and graphite/hard carbon hybrid anode for Li ion battery[J]. J Power Sources, 2011, 196(3):1365-1370. [48] GOTOH K, IZUKA M, ARAI J, et al. In situ 7Li nuclear magnetic resonance study of the relaxation effect in practical lithium ion batteries[J]. Carbon, 2014, 79:380-387. [49] ARAI J, OKADA Y, SUGIYAMA T, et al. In situ solid state 7Li NMR observations of lithium metal deposition during overcharge in lithium ion batteries[J]. J Electrochem Soc, 2015, 162(6):A952-A958. [50] SU X, DOGAN F, ILAVSKY J, et al. Mechanisms for lithium nucleation and dendrite growth in selected carbon allotropes[J]. Chem Mater, 2017, 29(15):6205-6213. [51] TATSUMI K, AKAI T, IMAMURA T, et al. 7Li-nuclear magnetic resonance observation of lithium insertion into mesocarbon microbeads[J]. J Electrochem Soc, 1996, 143(6):1923-1930. [52] ZHOU D H, PEER M, YANG Z Z, et al. Long cycle life microporous spherical carbon anodes for sodium-ion batteries derived from furfuryl alcohol[J]. J Mater Chem A, 2016, 4(17):6271-6275. [53] ALCNTARA R, ORTIZ G F, LAVELA P, et al. EPR, NMR, and electrochemical studies of surface-modified carbon microbeads[J]. Chem Mater, 2006, 18(9):2293-2301. [54] GOONETILLEKE D, PRAMUDITA J C, CHOUCAIR M, et al. Sodium insertion/extraction from single-walled and multi-walled carbon nanotubes:The differences and similarities[J]. J Power Sources, 2016, 314:102-108. [55] HAYES S E, GUIDOTTI R A, EVEN W R, et al. 7Li solid-state nuclear magnetic resonance as a probe of lithium species in microporous carbon anodes[J]. J Phys Chem A, 2003, 107(19):3866-3876. [56] KWON Y, KIM K, PARK H, et al. Anomalously high lithium storage in three-dimensional graphene-like ordered microporous carbon electrodes[J]. J Phys Chem C, 2018, 122(9):4955-4962. |