波谱学杂志 ›› 2021, Vol. 38 ›› Issue (4): 571-584.doi: 10.11938/cjmr20212926
• • 上一篇
肖瑶1,2,夏长久3,易先锋1,*(),刘凤庆1,2,刘尚斌4,郑安民1,*()
收稿日期:
2021-06-28
出版日期:
2021-12-05
发布日期:
2021-08-14
通讯作者:
易先锋,郑安民
E-mail:yxf@wipm.ac.cn;zhenganm@wipm.ac.cn
基金资助:
Yao XIAO1,2,Chang-jiu XIA3,Xian-feng YI1,*(),Feng-qing LIU1,2,Shang-bin LIU4,An-min ZHENG1,*()
Received:
2021-06-28
Online:
2021-12-05
Published:
2021-08-14
Contact:
Xian-feng YI,An-min ZHENG
E-mail:yxf@wipm.ac.cn;zhenganm@wipm.ac.cn
摘要:
生物质等绿色资源的高效转化利用是催化科学的重要发展方向.锡硅分子筛因具有优良的催化性能而得到相关研究者的普遍关注.准确构建催化剂活性中心结构/酸性与催化反应性能之间的构效关系是新型高效催化剂设计与研发的基础.固体核磁共振(NMR)是研究分子筛活性中心局域结构、酸特性与催化反应机理的重要手段.本文简述了近年来固体NMR技术在锡硅分子筛研究领域的一系列主要进展,并进行了展望.
中图分类号:
肖瑶,夏长久,易先锋,刘凤庆,刘尚斌,郑安民. 固体核磁共振技术在锡硅分子筛表征中的应用[J]. 波谱学杂志, 2021, 38(4): 571-584.
Yao XIAO,Chang-jiu XIA,Xian-feng YI,Feng-qing LIU,Shang-bin LIU,An-min ZHENG. Progress in the Studies on Sn-Zeolites by Solid-State Nuclear Magnetic Resonance[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 571-584.
1 |
ROGELJ J , NABEL J , CHEN C , et al. Copenhagen accord pledges are paltry[J]. Nature, 2010, 464 (7292): 1126- 1128.
doi: 10.1038/4641126a |
2 |
RAGAUSKAS A J , WILLIAMS C K , DAVISON B H , et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311 (5760): 484- 489.
doi: 10.1126/science.1114736 |
3 |
ALVIRA P , TOMáS-PEJó E , BALLESTEROS M , et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review[J]. Bioresource Technol, 2010, 101 (13): 4851- 4861.
doi: 10.1016/j.biortech.2009.11.093 |
4 |
MOLINER M , ROMáN-LESHKOV Y , DAVIS M E . Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proc Natl Acad Sci USA, 2010, 107 (14): 6164- 6168.
doi: 10.1073/pnas.1002358107 |
5 |
ROMáN-LESHKOV Y , MOLINER M , LABINGER J A , et al. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water[J]. Angew Chem Int Ed, 2010, 49 (47): 8954- 8957.
doi: 10.1002/anie.201004689 |
6 |
BERMEJO-DEVAL R , ASSARY R S , NIKOLLA E , et al. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites[J]. Proc Natl Acad Sci USA, 2012, 109 (25): 9727- 9732.
doi: 10.1073/pnas.1206708109 |
7 |
NIKOLLA E , ROMáN-LESHKOV Y , MOLINER M , et al. "One-Pot" synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-Beta zeolite[J]. ACS Catal, 2011, 1 (4): 408- 410.
doi: 10.1021/cs2000544 |
8 |
HOLM M S , SARAVANAMURUGAN S , TAARNING E . Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J]. Science, 2010, 328 (5978): 602- 605.
doi: 10.1126/science.1183990 |
9 |
ZHANG X , WILSON K , LEE A F . Heterogeneously catalyzed hydrothermal processing of C5-C6 sugars[J]. Chem Rev, 2016, 116 (19): 12328- 12368.
doi: 10.1021/acs.chemrev.6b00311 |
10 |
MIKA L T , CSEFALVAY E , NEMETH A . Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability[J]. Chem Rev, 2018, 118 (2): 505- 613.
doi: 10.1021/acs.chemrev.7b00395 |
11 |
BORONAT M , CORMA A , RENZ M . Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-Beta zeolite catalysts[J]. J Phys Chem B, 2006, 110 (42): 21168- 21174.
doi: 10.1021/jp063249x |
12 |
CORMA A , DOMINE M E , VALENCIA S . Water-resistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite[J]. J Catal, 2003, 215 (2): 294- 304.
doi: 10.1016/S0021-9517(03)00014-9 |
13 |
LIU Y J , XIAO Y , XIA C J , et al. Insight into the effects of acid characteristics on the catalytic performance of Sn-MFI zeolites in the transformation of dihydroxyacetone to methyl lactate[J]. J Catal, 2020, 391, 386- 396.
doi: 10.1016/j.jcat.2020.09.004 |
14 |
CORMA A , NEMETH L T , RENZ M , et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations[J]. Nature, 2001, 412 (6845): 423- 425.
doi: 10.1038/35086546 |
15 |
ZHENG A M , LI S H , LIU S B , et al. Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy[J]. Acc Chem Res, 2016, 49 (4): 655- 663.
doi: 10.1021/acs.accounts.6b00007 |
16 |
KLINOWSKI J . Solid-state NMR studies of molecular sieve catalysts[J]. Chem Rev, 1991, 91 (7): 1459- 1479.
doi: 10.1021/cr00007a010 |
17 |
JIANG Y J , HUANG J , DAI W L , et al. Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts[J]. Solid State Nucl Magn Reson, 2011, 39 (3-4): 116- 141.
doi: 10.1016/j.ssnmr.2011.03.007 |
18 |
WANG Z C , JIANG Y J , BAIKER A , et al. Pentacoordinated aluminum species: New frontier for tailoring acidity-enhanced silica-alumina catalysts[J]. Acc Chem Res, 2020, 53 (11): 2648- 2658.
doi: 10.1021/acs.accounts.0c00459 |
19 |
SUN T T , XU S T , XIAO D , et al. Water-induced structural dynamic process in molecular sieves under mild hydrothermal conditions: Ship-in-a-bottle strategy for acidity identification and catalyst modification[J]. Angew Chem, 2020, 132 (46): 20853- 20862.
doi: 10.1002/ange.202009648 |
20 |
GONG K , LIU Z M , LIANG L X , et al. Acidity and local confinement effect in mordenite probed by solid-state NMR spectroscopy[J]. J Phys Chem Lett, 2021, 12 (9): 2413- 2422.
doi: 10.1021/acs.jpclett.0c03610 |
21 |
ZHENG A M , LIU S B , DENG F . 31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts[J]. Chem Rev, 2017, 117 (19): 12475- 12531.
doi: 10.1021/acs.chemrev.7b00289 |
22 |
YI X , PENG Y K , CHEN W , et al. Surface fingerprinting of faceted metal oxides and porous zeolite catalysts by probe-assisted solid-state NMR approaches[J]. Acc Chem Res, 2021, 54 (10): 2421- 2433.
doi: 10.1021/acs.accounts.1c00069 |
23 |
XU S T , ZHENG A M , WEI Y X , et al. Direct observation of cyclic carbenium Ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites[J]. Angew Chem Int Ed, 2013, 52 (44): 11564- 11568.
doi: 10.1002/anie.201303586 |
24 |
WOLF P , VALLA M , ROSSINI A J , et al. NMR signatures of the active sites in Sn-β zeolite[J]. Angew Chem, 2014, 126 (38): 10343- 10347.
doi: 10.1002/ange.201403905 |
25 |
KOLYAGIN Y G , YAKIMOV A V , TOLBORG S , et al. Application of 119Sn CPMG MAS NMR for fast characterization of Sn sites in zeolites with natural 119Sn isotope abundance[J]. J Phys Chem Lett, 2016, 7 (7): 1249- 1253.
doi: 10.1021/acs.jpclett.6b00249 |
26 |
YAKIMOV A V , KOLYAGIN Y G , TOLBORG S , et al. 119Sn MAS NMR study of the interaction of probe molecules with Sn-BEA: The origin of penta- and hexacoordinated tin formation[J]. J Phys Chem C, 2016, 120 (49): 28083- 28092.
doi: 10.1021/acs.jpcc.6b09999 |
27 |
SUSHKEVICH V L , KOTS P A , KOLYAGIN Y G , et al. Origin of water-induced Brønsted acid sites in Sn-BEA zeolites[J]. J Phys Chem C, 2019, 123 (9): 5540- 5548.
doi: 10.1021/acs.jpcc.8b12462 |
28 |
WOLF P , VALLA M , NúñEZ-ZARUR F , et al. Correlating synthetic methods, morphology, atomic-level structure, and catalytic activity of Sn-β catalysts[J]. ACS Catal, 2016, 6 (7): 4047- 4063.
doi: 10.1021/acscatal.6b00114 |
29 |
ROY S , BAKHMUTSKY K , MAHMOUD E , et al. Probing Lewis acid sites in Sn-Beta zeolite[J]. ACS Catal, 2013, 3 (4): 573- 580.
doi: 10.1021/cs300599z |
30 |
KOLYAGIN Y G , YAKIMOV A V , TOLBORG S , et al. Direct observation of tin in different T-sites of Sn-BEA by one- and two-dimensional 119Sn MAS NMR spectroscopy[J]. J Phys Chem Lett, 2018, 9 (13): 3738- 3743.
doi: 10.1021/acs.jpclett.8b01415 |
31 |
WOLF P , LIAO W C , ONG T C , et al. Identifying Sn site heterogeneities prevalent among Sn-Beta zeolites[J]. Helvetica Chimica Acta, 2016, 99 (12): 916- 927.
doi: 10.1002/hlca.201600234 |
32 |
GUNTHER W R , MICHAELIS V K , CAPORINI M A , et al. Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance 119Sn precursors[J]. J Am Chem Soc, 2014, 136 (17): 6219- 6222.
doi: 10.1021/ja502113d |
33 |
DIJKMANS J , DUSSELIER M , GABRIëLS D , et al. Cooperative catalysis for multistep biomass conversion with Sn/Al Beta zeolite[J]. ACS Catal, 2015, 5 (2): 928- 940.
doi: 10.1021/cs501388e |
34 |
OVERHAUSER A W . Polarization of nuclei in metals[J]. Phys Rev, 1953, 92 (2): 411- 415.
doi: 10.1103/PhysRev.92.411 |
35 |
BARKER W A . Dynamic nuclear polarization[J]. Rev Mod Phys, 1962, 34 (2): 173- 185.
doi: 10.1103/RevModPhys.34.173 |
36 |
QI G D , WANG Q , XU J , et al. Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy[J]. Commun Chem, 2018, 1 (1): 22.
doi: 10.1038/s42004-018-0023-1 |
37 |
ZHAO S F , HE S L , DU KIM K , et al. Influence of hierarchical ZSM-5 catalysts with various acidity on the dehydration of glycerol to acrolein[J]. Magn Reson Lett, 2021, 1 (1): 71- 80.
doi: 10.1016/j.mrl.2021.100002 |
38 |
LUNSFORD J L , ROTHWELL W P , SHEN W . Acid sites in zeolite Y: A solid-state NMR and infrared study using trimethylphosphine as a probe molecule[J]. J Am Chem Soc, 1985, 107 (6): 1540- 1547.
doi: 10.1021/ja00292a015 |
39 |
TRICKETT C A , OSBORN-POPP T M , SU J , et al. Identification of the strong Brønsted acid site in a metal-organic framework solid acid catalyst[J]. Nat Chem, 2019, 11, 170- 176.
doi: 10.1038/s41557-018-0171-z |
40 | GAO X Z , ZHANG Y , WANG X M , et al. Structure and acidity changes in ultra-stable Y zeolites during hydrothermal aging: A solid-state NMR spectroscopy study[J]. Chinese J Magn Reson, 2020, 37 (1): 95- 103. |
高秀枝, 张翊, 王秀梅, 等. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37 (1): 95- 103. | |
41 | XU C , CAI Z , WANG Q , et al. Preparation of biodiesel using silver-modified phosphotungstic acid as catalyst[J]. Chinese J Magn Reson, 2020, 37 (1): 86- 94. |
徐超, 蔡哲, 王晴, 等. 银改性磷钨酸催化制备生物柴油工艺研究[J]. 波谱学杂志, 2020, 37 (1): 86- 94. | |
42 |
YI X F , LIU K Y , CHEN W , et al. Origin and structural characteristics of tri-coordinated extra-framework aluminum species in dealuminated zeolites[J]. J Am Chem Soc, 2018, 140 (34): 10764- 10774.
doi: 10.1021/jacs.8b04819 |
43 |
YI X F , XIAO Y , LI G C , et al. From one to two: Acidic proton spatial networks in porous zeolite materials[J]. Chem Mater, 2020, 32 (3): 1332- 1342.
doi: 10.1021/acs.chemmater.0c00005 |
44 |
YI X F , KO H , DENG F , et al. Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts[J]. Nat Protoc, 2020, 15, 3527- 3555.
doi: 10.1038/s41596-020-0385-6 |
45 |
LEWIS J D , HA M , LUO H , et al. Distinguishing active site identity in Sn-Beta zeolites using 31P MAS NMR of adsorbed trimethylphosphine oxide[J]. ACS Catal, 2018, 8 (4): 3076- 3086.
doi: 10.1021/acscatal.7b03533 |
46 |
DAI W L , LEI Q F , WU G J , et al. Spectroscopic signature of Lewis acidic framework and extraframework Sn sites in Beta zeolites[J]. ACS Catal, 2020, 10 (23): 14135- 14146.
doi: 10.1021/acscatal.0c02356 |
47 |
KIM K D , WANG Z C , JIANG Y J , et al. The cooperative effect of Lewis and Brønsted acid sites on Sn-MCM-41 catalysts for the conversion of 1, 3-dihydroxyacetone to ethyl lactate[J]. Green Chem, 2019, 21 (12): 3383- 3393.
doi: 10.1039/C9GC00820A |
48 |
GUNTHER W R , MICHAELIS V K , GRIFFIN R G , et al. Interrogating the Lewis acidity of metal sites in Beta zeolites with 15N pyridine adsorption coupled with MAS NMR spectroscopy[J]. J Phys Chem C, 2016, 120 (50): 28533- 28544.
doi: 10.1021/acs.jpcc.6b07811 |
49 |
HARRIS J W , LIAO W C , DI IORIO J R , et al. Molecular structure and confining environment of Sn sites in single-site chabazite zeolites[J]. Chem Mater, 2017, 29 (20): 8824- 8837.
doi: 10.1021/acs.chemmater.7b03209 |
50 |
QI G D , CHU Y Y , WANG Q , et al. Gem-Diol-type intermediate in the activation of a ketone on Sn-β zeolite as studied by solid-state NMR spectroscopy[J]. Angew Chem, 2020, 59 (44): 19532- 19538.
doi: 10.1002/anie.202005589 |
[1] | 陈翰迪,孔海宇,赵侦超,张维萍. 固体核磁共振结合密度泛函理论计算研究SSZ-39分子筛的钠离子落位与铝分布[J]. 波谱学杂志, 2021, 38(4): 543-551. |
[2] | 杨文杰,黄骏. 基于固体核磁共振技术的固体酸结构、酸性及活性分析[J]. 波谱学杂志, 2021, 38(4): 460-473. |
[3] | 夏锡锋,张文静,林芝晔,柯晓康,温玉洁,王芳,陈俊超,彭路明. 氧化物纳米材料表面结构与性质的固体核磁共振波谱研究[J]. 波谱学杂志, 2021, 38(4): 533-542. |
[4] | 王永祥,王强,徐君,夏清华,邓风. 六氟硅酸铵后处理对H-ZSM-5分子筛酸性影响的固体NMR研究[J]. 波谱学杂志, 2021, 38(4): 514-522. |
[5] | 王子春,黄骏,姜怡娇. 五配位铝强化硅铝固体酸的固体核磁共振研究[J]. 波谱学杂志, 2021, 38(4): 552-570. |
[6] | 史朝为,石攀,田长麟. 非天然氨基酸在蛋白质动态特性核磁共振研究中的应用[J]. 波谱学杂志, 2021, 38(4): 523-532. |
[7] | 高树树,徐舒涛,魏迎旭,刘中民. 固体核磁共振技术在甲醇制烯烃反应中的应用[J]. 波谱学杂志, 2021, 38(4): 433-447. |
[8] | 陈欣,付颖懿,岳斌,贺鹤勇. 固体核磁共振技术研究金属氧化物类固体酸催化剂的酸碱性[J]. 波谱学杂志, 2021, 38(4): 491-502. |
[9] | 张之杰, 李端秀, 罗春, 仇汝臣, 邓宗武, 张海禄. 晶体学辅助的2-吡啶甲酸固体13C化学位移理论计算归属[J]. 波谱学杂志, 2020, 37(1): 67-75. |
[10] | 雷振宇, 梁欣苗, 雷友义, 杨丽, 冯继文. 固体核磁共振技术在锂/钠离子电池碳负极中的应用及研究进展[J]. 波谱学杂志, 2020, 37(1): 28-39. |
[11] | 魏令, 张善民. 利用相位步进脉冲消除探头13C NMR背景信号[J]. 波谱学杂志, 2020, 37(1): 123-130. |
[12] | 高秀枝, 张翊, 王秀梅, 张智华, 徐广通. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37(1): 95-103. |
[13] | 冯宗静, 杜亚平, 罗锋, 徐骏. 通过超宽139La固体核磁共振波谱研究层状La(OH)2NO3[J]. 波谱学杂志, 2020, 37(1): 76-85. |
[14] | 王杨, 杨昌菊, 温玉洁, 陈俊超, 杜佳欢, 彭路明. 利用17O固体核磁共振波谱分析Ni/CeO2表面镍离子含量[J]. 波谱学杂志, 2020, 37(1): 52-60. |
[15] | 梁力鑫, 邓风, 侯广进. 固体核磁共振魔角旋转条件下的定量交叉极化技术(英文)[J]. 波谱学杂志, 2020, 37(1): 1-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||