1 |
徐如人, 庞文琴, 等. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.
|
2 |
CORMA A . From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem Rev, 1997, 97 (6): 2373- 2420.
doi: 10.1021/cr960406n
|
3 |
MOLINER M , FRANCH C , PALOMARES E , et al. Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of Nox[J]. Catal Commun, 2012, 48 (66): 8264- 8266.
|
4 |
WANG Y , LI G G , ZHANG S Q , et al. Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction: Activity, hydrothermal stability, and mechanism study[J]. Chem Eng J, 2020, 393, 124782.
doi: 10.1016/j.cej.2020.124782
|
5 |
MEMIOGLU O , IPEK B . A potential catalyst for continuous methane partial oxidation to methanol using N2O: Cu-SSZ-39[J]. Chem Commun, 2021, 57 (11): 1364- 1367.
doi: 10.1039/D0CC06534J
|
6 |
MARTIN GARCIA N , LI Z B , MARTINEZ TRIGUERO L J , et al. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process[J]. Catal Commun, 2016, 52 (36): 6072- 6075.
|
7 |
DUSSELIER M , DEIMUND M A , SCHMIDT J E , et al. Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39[J]. ACS Catal, 2015, 5 (10): 6078- 6085.
doi: 10.1021/acscatal.5b01577
|
8 |
DĚDECEK J , CAPEK L , KAUCKY D , et al. Siting and distribution of the Co ions in Beta zeolite: A UV-Vis-NIR and FTIR study[J]. J Catal, 2002, 211 (1): 198- 207.
doi: 10.1016/S0021-9517(02)93697-3
|
9 |
VJUNOV A , FULTON J L , HUTHWELKER T , et al. Quantitatively probing the Al distribution in zeolites[J]. J Am Chem Soc, 2014, 136 (23): 8296- 8306.
doi: 10.1021/ja501361v
|
10 |
GREY C P , POSHNI F I , GUALTIERI A F . Combined MAS NMR and X-ray powder diffraction structural characterization of hydrofluorocarbon-134 adsorbed on zeolite NaY: Observation of cation migration and strong sorbatecation interactions[J]. J Am Chem Soc, 1997, 119 (8): 1981- 1989.
doi: 10.1021/ja963565x
|
11 |
PENG L M , GUO X F , DING W P . 17O Solid-state NMR studies of zeolites: A review[J]. Chinese J Magn Reson, 2009, 26 (2): 173- 187.
doi: 10.3969/j.issn.1000-4556.2009.02.002
|
|
彭路明, 郭学锋, 丁维平. 沸石17O固体核磁共振研究进展[J]. 波谱学杂志, 2009, 26 (2): 173- 187.
doi: 10.3969/j.issn.1000-4556.2009.02.002
|
12 |
YU Z W , ZHENG A M , WANG Q , et al. Acidity characterization of solid acid catalysts by solid-state NMR spectroscopy: A review on recent progresses[J]. Chinese J Magn Reson, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001
|
|
喻志武, 郑安民, 王强, 等. 固体核磁共振研究固体酸催化剂酸性进展[J]. 波谱学杂志, 2010, 27 (4): 485- 515.
doi: 10.3969/j.issn.1000-4556.2010.04.001
|
13 |
GAO X Z , ZHANG Y , WANG X M , et al. Structure and acidity changes in ultra-stable Y zeolites during hydrothermal aging: A solid-state NMR spectroscopy study[J]. Chinese J Magn Reson, 2020, 37 (1): 95- 103.
|
|
高秀枝, 张翊, 王秀梅, 等. NMR研究超稳Y分子筛水热老化过程中结构与酸性的变化[J]. 波谱学杂志, 2020, 37 (1): 95- 103.
|
14 |
MASSIOT D , TOUZO B , TRUMEAU D , et al. Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei[J]. Solid State Nucl Mag, 1996, 6 (1): 73- 83.
doi: 10.1016/0926-2040(95)01210-9
|
15 |
LI S K , ZHAO Z C , ZHAO R R , et al. Aluminum location and acid strength in an aluminum-rich Beta zeolite catalyst: A combined density functional theory and solid-state NMR study[J]. ChemCatChem, 2017, 9 (8): 1494- 1502.
doi: 10.1002/cctc.201601623
|
16 |
ZHAO R R , Zhao Z C , LI S K , et al. Insights into the correlation of aluminum distribution and Bronsted acidity in H-Beta zeolites from solid-state NMR spectroscopy and DFT calculations[J]. J Phys Chem Lett, 2017, 8 (10): 2323- 2327.
doi: 10.1021/acs.jpclett.7b00711
|
17 |
LI S H , LI S K , XING Y D , et al. Aluminum distribution and Brønsted acidity of Al-Rich SSZ-13 zeolite: A combined DFT calculation and solid-state NMR study[J]. Acta Phys Chim Sin, 2020, 36 (4): 1903021.
|
|
李诗涵, 李世坤, 邢友东, 等. DFT计算结合固体NMR研究富铝SSZ-13的铝分布和Brønsted酸性[J]. 物理化学学报, 2020, 36 (4): 1903021.
|
18 |
KLEIN P , PASHKOVA V , THOMAS H M , et al. Local structure of cationic sites in dehydrated zeolites inferred from 27Al MAS NMR and DFT calculations. A study on Li-, Na-, and K-chabazite[J]. J Phys Chem C, 2016, 120 (26): 14216- 14225.
doi: 10.1021/acs.jpcc.6b04391
|
19 |
SKLENAK S , DĚDECEK J , LI C B , et al. Aluminum siting in silicon-rich zeolite frameworks: A combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5[J]. Angew Chem Int Ed, 2007, 46 (38): 7286- 7289.
doi: 10.1002/anie.200702628
|
20 |
OMEGNA A , VASIC M , VAN BOKHOVEN R A , et al. Dealumination and realumination of microcrystalline zeolite beta: An XRD, FTIR and quantitative multinuclear (MQ) MAS NMR study[J]. Phys Chem Chem Phys, 2003, 6 (2): 88- 99.
|
21 |
HUNGER M , SARV P , SAMOSON A . Two-dimensional triple-quantum 23Na MAS NMR spectroscopy of sodium cations in dehydrated zeolites[J]. Solid State Nucl Mag, 1997, 9 (2-4): 115- 120.
doi: 10.1016/S0926-2040(97)00051-9
|
22 |
ZHAO Z C , XING Y D , LI S H , et al. Mapping Al distributions in SSZ-13 zeolites from 23Na solid-state NMR spectroscopy and DFT calculations[J]. J Phys Chem C, 2018, 122 (18): 9973- 9979.
doi: 10.1021/acs.jpcc.8b01423
|
23 |
MOINI A, MCGUIRE R, MULLER U. A Process for preparing a zeolitic material comprising a metal M and having framework type AEI: WO2018210815-A1[P]. 2018-11-22.
|
24 |
XIE P , ZHANG Y Z , LI S L , et al. Isomorphous substitution of faujusite with (NH4)2 SiF6 Ⅱ. dealumination of (Nh4Na)Y with different na contents and nay[J]. Chinese Journal of Catalysis, 1993, 12 (1): 32- 38.
|
|
谢鹏, 张盈珍, 李淑莲, 等. 八面沸石用(NH4)2 SiF6脱铝补硅的研究[J]. 催化学报, 1993, 12 (1): 32- 38.
|
25 |
ZHU X X , LIU S L , SONG Y Q , et al. Post-treatment with ammonium hexafluorosilicate: An effective way to synthesize high silica MCM-22 zeolite[J]. Catal Commun, 2005, 6 (11): 742- 746.
doi: 10.1016/j.catcom.2005.07.005
|
26 |
SOMMER L , MORES D , SVELLE S , et al. Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH[J]. Micropor Mesopor Mat, 2013, 132 (3): 384- 394.
|
27 |
AMOUREUX J P , FERNANDEZ C , STEUERNAGEL S . Z filtering in MQ MAS NMR[J]. J Magn Reson, 1996, 123 (1): 116- 118.
doi: 10.1006/jmra.1996.0221
|
28 |
MASSIOT D , FAYON F , CAPRON M , et al. Modelling one- and two-dimensional solid-state NMR spectra[J]. Magn Reson Chem, 2002, 40 (1): 70- 76.
doi: 10.1002/mrc.984
|
29 |
ZHENG A M , ZHANG H , LEI C , et al. Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids[J]. J Phys Chem B, 2007, 111 (12): 3085- 3089.
doi: 10.1021/jp067340c
|
30 |
FRISCH M J, TRUCKS G W, SCHLEGE H B et al. Gaussian 09, Revision D. 01; Gaussian Inc: Wallingford, CT, 2013
|
31 |
LI Y H , DENG J L , SONG W Y , et al. Nature of Cu species in Cu-SAPO-18 catalyst for NH3-SCR: combination of experiments and DFT calculations[J]. J Phys Chem C, 2016, 120 (27): 14669- 14680.
doi: 10.1021/acs.jpcc.6b03464
|
32 |
SMITH L J , ECKERT H , CHEETHAM A K . Potassium cation effects on site preferences in the mixed cation zeolite Li, Na-chabazite[J]. Chem Mater, 2012, 13 (2): 385- 391.
|
33 |
PAOLUCCI C , PAREKH A A , KHURANA I , et al. Catalysis in a cage: Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. J Am Chem Soc, 2016, 138 (18): 6028- 6048.
doi: 10.1021/jacs.6b02651
|