[1] ZANGGER K. Pure shift NMR[J]. Prog Nucl Magn Reson Spectrosc, 2015, 86-87:1-20. [2] CASTAÑAR L, PARELLA T. Broadband 1H homodecoupled NMR experiments:Recent developments, methods and applications[J]. Magn Reson Chem, 2015, 53(6):399-426. [3] LAURA C. Pure shift 1H NMR:What's next?[J]. Magn Reson Chem, 2017, 55:47-53. [4] ZHOU Q J, XIANG J F, TANG Y L, et al. Pure shift proton NMR spectroscopy and its applications[J]. Chinese J Magn Reson, 2016, 33(3):502-513. 周秋菊, 向俊锋, 唐亚林, 等. 纯位移核磁共振氢谱及其应用[J]. 波谱学杂志, 2016, 33(3):502-513. [5] ERNST R R, PRIMAS H. Nuclear magnetic resonance with stochastic high-frequency fields[J]. Helv Phys Acta, 1963, 36(5):583-600. [6] ANDERSON W A, FREEMAN R. Influence of a second radiofrequency field on high-resolution nuclear magnetic resonance spectra[J]. J Chem Phys, 1962, 37(1):85-103. [7] AUE W P, KARHAN J, ERNST R R. Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy[J]. J Chem Phys, 1976, 64(10):4226-4227. [8] BAX A, MEHLKOPF A F, SMIDT J. Homonuclear broadband-decoupled absorption-spectra, with linewidths which are independent of the transverse relaxation rate[J]. J Magn Reson, 1979, 35(1):167-169. [9] SØRENSEN O W, GRIESINGER C, ERNST R R. Time-reversal of the evolution under scalar spin spin interactions in NMR-application for ω1 decoupling in two-dimensional NOE spectroscopy[J]. J Am Chem Soc, 1985, 107(25):7778-7779. [10] PELL A J, EDDEN R A E, KEELER J. Broadband proton-decoupled proton spectra[J]. Magn Reson Chem, 2007, 45(4):296-316. [11] GARBOW J R, WEITEKAMP D P, PINES A. Bilinear rotation decoupling of homonuclear scalar interactions[J]. Chem Phys Lett, 1982, 93(5):504-509. [12] ZANGGER K, STERK H. Homonuclear broadband-decoupled NMR spectra[J]. J Magn Reson, 1997, 124(2):486-489. [13] AGUILAR J A, FAULKNER S, NILSSON M, et al. Pure shift 1H NMR:A resolution of the resolution problem?[J]. Angew Chem Int Ed, 2010, 49(23):3901-3903. [14] LUPULESCU A, OLSEN G L, FRYDMAN L. Toward single-shot pure-shift solution 1H NMR by trains of BIRD-based homonuclear decoupling[J]. J Magn Reson, 2012, 218:141-146. [15] MEYER N H, ZANGGER K. Simplifying proton NMR spectra by instant homonuclear broadband decoupling[J]. Angew Chem Int Ed, 2013, 52(28):7143-7146. [16] CASTAÑAR L, NOLIS P, VIRGILI A, et al. Full sensitivity and enhanced resolution in homodecoupled band-selective NMR[J]. Chem Eur J, 2013, 19(51):17283-17286. [17] YING J, ROCHE J, BAX A. Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins[J]. J Magn Reson, 2014, 241:97-102. [18] FOROOZANDEH M, ADAMS R W, MEHARRY N J, et al. Ultrahigh-resolution NMR spectroscopy[J]. Angew Chem Int Ed, 2014, 53(27):6990-6992. [19] PAUDEL L, ADAMS R W, KIRALY P, et al. Simultaneously enhancing spectral resolution and sensitivity in heteronuclear correlation NMR spectroscopy[J]. Angew Chem Int Ed, 2013, 52(44):11616-11619. [20] CASTAÑAR L, NOLIS P, VIRGILI A, et al. Experiments simultaneous multi-slice excitation in spatially encoded NMR experiments[J]. Chem Eur J, 2013, 19(46):15472-15475. [21] COTTE A, JEANNERAT D. 1D NMR homodecoupled 1H spectra with scalar coupling constants from 2D NemoZS-DIAG experiments[J]. Angew Chem Int Ed, 2015, 54(20):6016-6018. [22] REINSPERGER T, LUY B. Homonuclear BIRD-decoupled spectra for measuring one-bond couplings with highest resolution:CLIP/CLAP-RESET and constant-time-CLIP/CLAP-RESET[J]. J Magn Reson, 2014, 239:110-120. [23] KALTSCHNEE L, KOLMER A, TIMARI I, et al. "Perfecting" pure shift HSQC:Full homodecoupling for accurate and precise determination of heteronuclear couplings[J]. Chem Commun, 2014, 50(99):15702-15705. [24] PEREZ-TRUJILLO M, CASTAÑAR L, MONTEAGUDO E, et al. Simultaneous 1H and 13C NMR enantiodifferentiation from highly-resolved pure shift HSQC spectra[J]. Chem Commun, 2014, 50(71):10214-10217. [25] CASTAÑAR L, ROLDAN R, CLAPES P, et al. Disentangling complex mixtures of compounds with near-identical 1H and 13C NMR spectra using pure shift NMR spectroscopy[J]. Chem Eur J, 2015, 21(21):7682-7685. [26] MARCÓ N, FREDI A, PARELLA T. Ultra high-resolution HSQC:Application to the efficient and accurate measurement of heteronuclear coupling constants[J]. Chem Commun, 2015, 51(15):3262-3265. [27] HANSEN S U, MILLER G J, CLIFF M J, et al. Making the longest sugars:A chemical synthesis of heparin-related [4]n oligosaccharides from 16-mer to 40-mer[J]. Chem Sci, 2015, 6(11):6158-6164. [28] KAKITA V M, HOSUR R V. Non-uniform-sampling ultrahigh resolution TOCSY NMR:Analysis of complex mixtures at microgram levels[J]. ChemPhysChem, 2016, 17(15):2304-2308. [29] MORRIS G A, AGUILAR J A, EVANS R, et al. True chemical shift correlation maps:A TOCSY experiment with pure shifts in both dimensions[J]. J Am Chem Soc, 2010, 132(37):12770-12772. [30] FOROOZANDEH M, ADAMS R W, NILSSON M, et al. Ultrahigh-resolution total correlation NMR spectroscopy[J]. J Am Chem Soc, 2014, 136(34):11867-11869. [31] AGUILAR J A, NILSSON M, MORRIS G A. Simple proton spectra from complex spin systems:Pure shift NMR spectroscopy using BIRD[J]. Angew Chem Int Ed, 2011, 50(41):9716-9717. [32] FOROOZANDEH M, ADAMS R W, KIRALY P, et al. Measuring couplings in crowded NMR spectra:Pure shift NMR with multiplet analysis[J]. Chem Commun, 2015, 51(84):15410-15413. [33] ILGEN J, KALTSCHNEE L, THIELE C M. A pure shift experiment with increased sensitivity and superior performance for strongly coupled systems[J]. J Magn Reson, 2018, 286:18-29. [34] MOUTZOURI P, CHEN Y X, FOROOZANDEH M, et al. Ultraclean pure shift NMR[J]. Chem. Commun, 2017, 53:10188. [35] MAUHART J, GLANZER S, SAKHAII P, et al. Faster and cleaner real-time pure shift NMR experiments[J]. J Magn Reson, 2015, 259:207-215. [36] NDUKWE I E, SHCHUKINA A, KAZIMIERCZUK K, et al. EXtended ACquisition Time (EXACT) NMR-a case for ‘burst’ non-uniform sampling[J]. ChemPhysChem, 2016, 17(18):2799-2803. [37] KIRALY P, NILSSON M, MORRIS GA. Semi-real-time acquisition for fast pure shift NMR at maximum resolution[J]. J Magn Reson, 2018, 293:19-27. [38] FREDI A, NOLIS P, COBAS C, et al. Exploring the use of generalized Indirect covariance to reconstruct pure shift NMR spectra:Current Pros and Cons[J]. J Magn Reson, 2016, 266:16-22. [39] FREDI A, NOLIS P, COBAS C, et al. Access to experimentally infeasible spectra by pure-shift NMR covariance[J]. J Magn Reson, 2016, 270:161-168. [40] LIU Y, GREEN M D, MARGUES R, et al. Using pure shift HSQC to characterize microgram samples of drug metabolites[J]. Tetrahedron Lett, 2014, 55(40):5450-5453. [41] KALTSCHNEE L, KNOLL K, SCHMIDTS V, et al. Extraction of distance restraints from pure shift NOE experiments[J]. J Magn Reson, 2016, 271:99-109. [42] CASTAÑAR L, PEREZ-TRUJILLO M, NOLIS P, et al. Enantiodifferentiation through frequency-selective pure shift 1H nuclear magnetic resonance spectroscopy[J]. ChemPhysChem, 2014, 15(5):854-857. [43] LAKSHMIPRIYA A, CHAUDHARI S R, SURYAPRAKASH N. Enantio-differentiation of molecules with diverse functionalities using a single probe[J]. Chem Commun, 2015, 51(70):13492-13495. [44] ADAMS R W, BYRNE L, KIRALY P, et al. Diastereomeric ratio determination by high sensitivity band-selective pure shift NMR spectroscopy[J]. Chem Commun, 2014, 50(19):2512-2514. [45] KAKITA V M R, VEMULAPALLI S P B, BHARATAM J. Band-selective excited ultrahigh resolution PSYCHE-TOCSY:Fast screening of organic molecules and complex mixtures[J]. Magn Reson Chem2016, 54(4):308-314. [46] POGGETTO G D, CASTANAR L, MORRIS G A, et al. A new tool for NMR analysis of complex systems:Selective pure shift TOCSY[J]. RSC Adv, 2016, 6(102):100063-100066. [47] NILSSON M, MORRIS G A. Pure shift proton DOSY:Diffusion-ordered 1H spectra without multiplet structure[J]. Chem Commun, 2007, (9):933-935. [48] HAMDOUN G, SEBBAN M, COSSOUL E, et al. 1H pure shift DOSY:A handy tool to evaluate the aggregation and solvation of organolithium derivatives[J]. Chem Commun, 2014, 50(31):4073-4075. [49] GLANZER S, ZANGGER K. Directly decoupled diffusion-ordered NMR spectroscopy for the analysis of compound mixtures[J]. Chem Eur J, 2014, 20(35):11171-11175. [50] LI C, ZHAN H L, YAN J, et al. A pure shift and spin echo based approach for high-resolution diffusion-ordered NMR spectroscopy[J]. J Magn Reson, 2019, 305:209-218. [51] CASTAÑAR L, NOLIS P, VIRGILI A, et al. Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals[J]. J Magn Reson, 2014, 244:30-35. [52] HUANG Y Q, ZHAN H L, YOU X Q, et al. A pure shift-based NMR method for transverse relaxation measurements on complex samples[J]. IEEE Transactions on Instrumentation and Measurement, publishing, 2019. [53] HUANG Y Q, CAO S H, YANG Y, et al. Ultrahigh-resolution NMR spectroscopy for rapid chemical and biological applications inhomogeneous magnetic fields[J]. Anal Chem, 2017, 89:7115-7122. [54] CHEN Z, HUANG Y Q, LIN Y Q, et al. Accurate measurement of small J Couplings[J]. Annual Reports on NMR Spectroscopy. 2010, 72:157-183. [55] LIN Y Q, ZENG Q, LIN L J, et al. High-resolution methods for the measurement of scalar coupling constants[J]. Prog Nucl Magn Reson Spectrosc, 2018, 109:135-159. [56] CASTAÑAR L, GARCÍA M, HELLEMANN E, et al. One-shot determination of residual dipolar couplings:Application to the structural discrimination of small molecules containing multiple stereocenters[J]. J Org Chem, 2016, 81(22):11126-11131. [57] TIMÁRI I, KALTSCHNEE L, RAICS MH, et al. Real-time broadband proton-homodecoupled CLIP/CLAP-HSQC for automated measurement of heteronuclear one-bond coupling constants[J]. RSC Adv, 2016, 6(91):87848-87855. [58] ZENG Q, LIN L J, CHEN J Y, et al. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information[J]. J Magn Reson, 2017, 282:27-31. [59] LIN Y L, GUAN Q S, SU J W, et al. Combining Fourier phase encoding and broadband inversion toward J-edited spectra[J]. J Magn Reson, 2018, 291:1-7. [60] ZENG Q, LIN Y Q, CHEN Z. Pushing resolution limits for extracting 1H-1H scalar coupling constants by a resolution-enhanced selective refocusing method[J]. J Chem Phys, 2019, 150:184-202. [61] DONOVAN K J, FRYDMAN L. HyperBIRD:A sensitivity-enhanced approach to collecting homonuclear-decoupled proton NMR spectra[J]. Angew Chem Int Ed, 2015, 54(2):594-598. [62] MAUVE C, KHLIFI S, GILARD F, et al. Sensitive, highly resolved, and quantitative 1H-13C NMR data in one go for tracking metabolites in vegetal extracts[J]. Chem Commun, 2016, 52(36):6142-6145. [63] ARIANA B J, GUY C L, DUŠAN U. SHARPER reaction monitoring:Generation of a narrow linewidth NMR singlet, without X-pulses, in an inhomogeneous magnetic field[J]. Anal Chem, 2017, 89:10013-10021. [64] ELYASHBERG M E, WILLIAMS A J, MARTIN G E. Computer-assisted structure verification and elucidation tools in NMR-based structure elucidation[J]. Prog Nucl Magn Reson Spectrosc, 2008, 53(1-2):1-104. [65] ELYASHBERG M E, WILLIAMS A, BLINOV K. Contemporary computer-assisted approaches to molecular structure elucidation[M]. Britain:RSC Publishing, 2012. |