波谱学杂志 ›› 2019, Vol. 36 ›› Issue (2): 238-251.doi: 10.11938/cjmr20182618
• 综述评论 • 上一篇
徐小俊1,2, 王申林1,2,3
收稿日期:
2018-03-12
发布日期:
2018-05-03
通讯作者:
王申林 Tel:010-62755835, E-mail:wangshenlin@pku.edu.cn
E-mail:wangshenlin@pku.edu.cn
基金资助:
XU Xiao-jun1,2, WANG Shen-lin1,2,3
Received:
2018-03-12
Published:
2018-05-03
Supported by:
摘要: 固体核磁共振技术因其可实现细胞膜环境中的蛋白质结构研究而广受关注.19F元素由于灵敏度高、天然丰度高,无生物背景等优点,被广泛应用于生物核磁共振技术中.氟标固体核磁共振技术常被用于细胞膜中蛋白质的相互作用研究,如:抗菌肽与细胞膜的相互作用、聚合膜蛋白结构分析等.此篇综述介绍了常用的蛋白质氟标修饰的实验方法,总结了常用的19F生物固体核磁共振实验技术,以及介绍了应用19F固体核磁共振研究膜蛋白的成功案例.此外,此篇综述讨论了19F固体核磁共振技术在蛋白质研究中的局限性.
中图分类号:
徐小俊, 王申林. 19F固体核磁共振技术研究膜蛋白相互作用的进展[J]. 波谱学杂志, 2019, 36(2): 238-251.
XU Xiao-jun, WANG Shen-lin. Probing Membrane Protein Interactions by 19F Solid-State NMR[J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 238-251.
[1] ANDERSEN O S, KOEPPE R E, Ⅱ. Bilayer thickness and membrane protein function:An energetic perspective[J]. Annu Rev Biophys Biomol Struct, 2007, 36:107-130. [2] PATCHING S G. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery[J]. Biochim Biophys Acta, 2014, 1838(1Pt A):43-55. [3] PHILLIPS R, URSELL T, WIGGINS P, et al. Emerging roles for lipids in shaping membrane-protein function[J]. Nature, 2009, 459(7245):379-385. [4] BAKER L A, BALDUS M. Characterization of membrane protein function by solid-state NMR spectroscopy[J]. Curr Opin Struc Biol, 2014, 27:48-55. [5] BAKER L A, FOLKERS G E, SINNIGE T, et al. Magic-angle-spinning solid-state nmr of membrane proteins[M]//SHUKLA A K. Membrane proteins-engineering, purification and crystallization. 2015, 557:307-328. [6] HANSEN S K, BERTELSEN K, PAASKE B, et al. Solid-state NMR methods for oriented membrane proteins[J]. Prog Nucl Mag Res Sp, 2015(88/89):48-85. [7] NAITO A, KAWAMURA I, JAVKHLANTUGS N. Recent solid-state NMR studies of membrane-bound peptides and proteins[J]. Annu Rep NMR Spectro, 2015, 86:333-411. [8] WARD M E, BROWN L S, LADIZHANSKY V. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics:Application to anabaena sensory rhodopsin[J]. J Magn Reson, 2015, 253:119-128. [9] GERIG J T. Fluorine NMR[M/OL]. 2001. http://www.biophysics.org/img/jtg2001-2.pdf. [10] AASHISH M, TAE HUM KIM, MATTHIEU M, et al. Structural insights into the dynamic process of beta2-adrenergic receptor signaling[J]. Cell, 2015, 161(5):1101-1111. [11] LIU J J, HORST R, KATRITCH V, et al. Biased signaling pathways in beta(2)-adrenergic receptor characterized by 19F NMR[J]. Science, 2012, 335(6072):1106-1110. [12] LEE M, YAO H, KWON B, et al. Conformation and trimer association of the transmembrane domain of the parainfluenza virus fusion protein in lipid bilayers from solid-state nmr:insights into the sequence determinants of trimer structure and fusion activity[J]. J Mol Biol, 2018, 15:695-709. [13] WILLIAMS J K, SHCHERBAKOV A A, WANG J, et al. Protonation equilibria and pore-opening structure of the dual-histidine influenza B virus M2 transmembrane proton channel from solid-state NMR[J]. J Biol Chem, 2017, 292(43):17876-17884. [14] SALNIKOV E S, RAYA J, DE ZOTTI M, et al. Alamethicin supramolecular organization in lipid membranes from 19F solid-state NMR[J]. Biophys J, 2016, 111(11):2450-2459. [15] WADHWANI P, STRANDBERG E, HEIDENREICH N, et al. Self-assembly of flexible beta-strands into immobile amyloid-like beta-sheets in membranes as revealed by solid-state 19F NMR[J]. J Am Chem Soc, 2012, 134(15):6512-6515. [16] GRAGE S L, SANI M A, CHENEVAL O, et al. Orientation and location of the cyclotide kalata b1 in lipid bilayers revealed by solid-state NMR[J]. Biophys J, 2017, 112(4):630-642. [17] MISIEWICZ J, AFONIN S, ULRICH A S. Control and role of pH in peptide-lipid interactions in oriented membrane samples[J]. Biochim Biophys Acta, 2015, 1848(3):833-841. [18] MANZO G, SCORCIAPINO M A, WADHWANI P, et al. Enhanced amphiphilic profile of a short beta-stranded peptide improves its antimicrobial activity[J]. Plos One, 2015, 10(1):e0116379. [19] BATTISTE J, NEWMARK R A. Applications of 19F multidimensional NMR[J]. Prog Nucl Mag Res Sp, 2006, 48(1):1-23. [20] KITEVSKI-LEBLANC J L, PROSSER R S. Current applications of 19F NMR to studies of protein structure and dynamics[J]. Prog Nucl Mag Res Sp, 2012, 62:1-33. [21] YU J X, HALLAC R R, CHIGURU S, et al. New frontiers and developing applications in 19F NMR[J]. Prog Nucl Mag Res Sp, 2013, 70:25-49. [22] DAI C Y, LIU M L, LI C G. Salt content-dependent conformational changes of alpha-synuclein studied by 19F NMR[J]. Chinese J Magn Reson, 2015, 32(1):33-40. 戴晨晔, 刘买利, 李从刚. 低盐和高盐环境下α-Synuclein构像的19F NMR[J]. 波谱学杂志, 2015, 32(1):33-40. [23] LI L S, LI Y, LAN Y J, et al. A brief review on 19F NMR[J]. Chinese J Magn Reson, 2007, 24(3):353-364. 李临生, 李燕, 兰云军, 等. 19F NMR的特点[J]. 波谱学杂志, 2007, 24(3):353-364. [24] LI C G, WANG G F, WANG Y Q, et al. Protein 19F NMR in Escherichia coli[J]. J Am Chem Soc, 2010, 132(1):321-327. [25] YE Y S, LIU X L, ZHANG Z T, et al. 19F NMR spectroscopy as a probe of cytoplasmic viscosity and weak protein interactions in living cells[J]. Chemistry, 2013, 19(38):12705-12710. [26] MERRIFIELD R B. Solid phase peptide synthesis.1. Synthesis of a tetrapeptide[J]. J Am Chem Soc, 1963, 85(14):2149-2154. [27] LARDA S T, SIMONETTI K, AL-ABDUL-WAHID M S, et al. Dynamic equilibria between monomeric and oligomeric misfolded states of the mammalian prion protein measured by 19F NMR[J]. J Am Chem Soc, 2013, 135(28):10533-10541. [28] LUCK L A, FALKE J J. 19F NMR-studies of the D-galactose chemosensory receptor.1. Sugar binding yields a global structural change[J]. Biochemistry, 1991, 30(17):4248-4256. [29] LI H, FRIEDEN C. NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein:Evidence for conformational heterogeneity in the native state[J]. Biochemistry, 2005, 44(7):2369-2377. [30] LI H L, FRIEDEN C. Observation of sequential steps in the folding of intestinal fatty acid binding protein using a slow folding mutant and 19F NMR[J]. P Natl Acad Sci USA, 2007, 104(29):11993-11998. [31] CHADEGANI F, LOVELL S, MULLANGI V, et al. 19F nuclear magnetic resonance and crystallographic studies of 5-fluorotryptophan-labeled anthrax protective antigen and effects of the receptor on stability[J]. Biochemistry, 2014, 53(4):690-701. [32] EVANICS F, BEZSONOVA I, MARSH J, et al. Tryptophan solvent exposure in folded and unfolded states of an SH3 domain by 19F and H-1 NMR[J]. Biochemistry, 2006, 45(47):14120-14128. [33] ANDERLUH G, RAZPOTNIK A, PODLESEK Z, et al. Interaction of the eukaryotic pore-forming cytolysin equinatoxin Ⅱ with model membranes:19F NMR studies[J]. J Mol Biol, 2005, 347(1):27-39. [34] LI H, FRIEDEN C. Comparison of C40/82A and P27A C40/82A barstar mutants using 19F NMR[J]. Biochem, 2007, 46(14):4337-4347. [35] BANN J G, PINKNER J, HULTGREN S J, et al. Real-time and equilibrium 19F NMR studies reveal the role of domain-domain interactions in the folding of the chaperone PapD[J]. P Natl Acad Sci USA, 2002, 99(2):709-714. [36] LI C G, LUTZ E A, SLADE K M, et al. 19F NMR studies of alpha-synuclein conformation and fibrillation[J]. Biochemistry, 2009, 48(36):8578-8584. [37] POMERANTZ W C, WANG N K, LIPINSKI A K, et al. Profiling the dynamic interfaces of fluorinated transcription complexes for ligand discovery and characterization[J]. ACS Chem Biol, 2012, 7(8):1345-1350. [38] IRA J R, JOSHUA A B, PAULA M D. A residual structure in unfolded intestinal fatty acid binding protein consists of amino acids that are neighbors in the native state[J]. Biochem, 2006, 45(8):2608-2617. [39] SCHLESINGER A P, WANG Y Q, TADEO X, et al. Macromolecular crowding fails to fold a globular protein in cells[J]. J Am Chem Soc, 2011, 133(21):8082-8085. [40] ZIGONEANU I G, PIELAK G J. Interaction of alpha-synuclein and a cell penetrating fusion peptide with higher eukaryotic cell membranes assessed by 19F NMR[J]. Mol Pharm, 2012, 9(4):1024-1029. [41] VILLARREAL F, TAN C. Cell-free systems in the new age of synthetic biology[J]. Front Chem Sci Eng, 2017, 11(1):58-65. [42] CARLSON E D, GAN R, HODGMAN C E, et al. Cell-free protein synthesis:Applications come of age[J]. Biotechnol Adv, 2012, 30(5):1185-1194. [43] HARADA R, FURUMOTO S, YOSHIKAWA T, et al. Synthesis and characterization of 18F-interleukin-8 using a cell-free translation system and 4-F-18-fluoro-l-proline[J]. J Nucl Med, 2016, 57(4):634-639. [44] NEERATHILINGAM M, GREENE L, COLEBROOKE S, et al. Quantitation of protein expression in a cell-free system:efficient detection of yields and 19F NMR to identify folded protein[J]. J Biomol NMR, 2005, 31(1):11-19. [45] KLEIN-SEETHARAMAN J, GETMANOVA E V, LOEWEN M C, et al. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin:Applicability of solution 19F NMR[J]. P Natl Acad Sci USA, 1999, 96(24):13744-13749. [46] LUCHETTE P A, PROSSER R S, SANDERS C R. Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and 19F NMR spectroscopy[J]. J Am Chem Soc, 2002, 124(8):1778-1781. [47] KIM TH, CHUNG K Y, MANGLIK A, et al. The role of ligands on the equilibria between functional states of a g protein-coupled receptor[J]. J Am Chem Soc, 2013, 135(25):9465-9474. [48] MEIBOOM S, GILL D. Modified spin-echo method for measuring nuclear relaxation times[J]. Rev Sci Instr, 1958, 29(8):688-691. [49] GRAGE S L, ULRICH A S. Structural parameters from 19F homonuclear dipolar couplings, obtained by multipulse solid-state NMR on static and oriented systems[J]. J Magn Reson, 1999, 138(1):98-106. [50] SALGADO J, GRAGE S L, KONDEJEWSKI L H, et al. Membrane-bound structure and alignment of the antimicrobial beta-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F NMR[J]. J Biomol NMR, 2001, 21(3):191-208. [51] GRAGE S L, SULEYMANOVA A V, AFONIN S, et al. Solid state NMR analysis of the dipolar couplings within and between distant CF3-groups in a membrane-bound peptide[J]. J Magn Reson, 2006, 183(1):77-86. [52] GRAGE S L, XU X J, SCHMITT M, et al. 19F-labeling of peptides revealing long-range nmr distances in fluid membranes[J]. J Phys Chem Lett, 2014, 5(24):4256-4259. [53] NAITO A, NISHIMURA K, KIMURA S, et al. Determination of the three-dimensional structure of a new crystalline form of N-acetyl-Pro-Gly-Phe as revealed by 13C REDOR, X-ray diffraction, and molecular dynamics calculation[J]. J Phys Chem, 1996, 100(36):14995-5004. [54] MERRITT M E, SIGURDSSON S T, DROBNY G P. Long-range distance measurements to the phosphodiester backbone of solid nucleic acids using 31P-19F REDOR NMR[J]. J Am Chem Soc, 1999, 121(25):6070-6071. [55] GRAGE S L, WATTS J A, WATTS A. 2H{19F} REDOR for distance measurements in biological solids using a double resonance spectrometer[J]. J Magn Reson, 2004, 166(1):1-10. [56] ANTONIOLI G, HODGKINSON P. Resolution of 13C-19F interactions in the 13C NMR of spinning solids and liquid crystals[J]. J Magn Reson, 2004, 168(1):124-131. [57] KIM S J, CEGELSKI L, PREOBRAZHENSKAYA M, et al. Structures of Staphylococcus aureus cell-wall complexes with vancomycin, eremomycin, and chloroeremomycin derivatives by 13C{19F} and 15N{19F} rotational-echo double resonance[J]. Biochemistry, 2006, 45(16):5235-5250. [58] LUO W B, HONG M. Determination of the oligomeric number and intermolecular distances of membrane protein assemblies by anisotropic (1)H-driven spin diffusion NMR spectroscopy[J]. J Am Chem Soc, 2006, 128(22):7242-7251. [59] MATEI E, GRONENBORN A M. 19F Paramagnetic relaxation enhancement:A valuable tool for distance measurements in proteins[J]. Angew Chem Int Ed, 2016, 55(1):150-54. [60] HUANG H W. Action of antimicrobial peptides:Two-state model[J]. Biochemistry, 2000, 39(29):8347-8352. [61] SHAI Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides[J]. Biochim Biophys Acta, 1999, 1462(1/2):55-70. [62] VAN'T HOF W, VEERMAN ECI, HELMERHORST E J, et al. Antimicrobial peptides:Properties and applicability[J]. Biol Chem, 2001, 382(4):597-619. [63] EPAND R M, VOGEL H J. Diversity of antimicrobial peptides and their mechanisms of action[J]. Biochim Biophys Acta, 1999, 1462(1/2):11-28. [64] BROGDEN K A. Antimicrobial peptides:Pore formers or metabolic inhibitors in bacteria?[J] Nat Rev Microbiol, 2005, 3(3):238-250. [65] OREN Z, SHAI Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides[J]. Biopolymers, 1998, 47(6):451-463. [66] BECHINGER B, GORR S U. Antimicrobial peptides:mechanisms of action and resistance[J]. J Dent Res, 2017, 96(3):254-260. [67] GLASER R W, SACHSE C, DURR U H N, et al. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F NMR dipolar couplings of 4-CF3-phenylglycine labels[J]. J Magn Reson, 2004, 168(1):153-163. [68] BECHINGER B, ZASLOFF M, OPELLA S J. Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy[J]. Biophy J, 1998, 74(2):981-987. [69] AFONIN S, GRAGE SL, IERONIMO M, et al. Temperature-dependent transmembrane insertion of the amphiphilic peptide pgla in lipid bilayers observed by solid state 19F NMR spectroscopy[J]. J Am Chem Soc, 2008, 130(49):16512-16514. [70] TANG Y J, ZAITSEVA F, LAMB R A, et al. The gate of the influenza virus M-2 proton channel is formed by a single tryptophan residue[J]. J Biol Chem, 2002, 277(42):39880-39886. [71] SALOM D, HILL B R, LEAR J D, et al. pH-dependent tetramerization and amantadine binding of the transmembrane helix of M2 from the influenza A virus[J]. Biochemistry, 2000, 39(46):14160-14170. [72] SPITZER J, POOLMAN B. The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life's emergence[J]. Microbiol Mol Biol R, 2009, 73(2):371-388. [73] MIKLOS A C, LI C, SHARAF N G, et al. Volume exclusion and soft interaction effects on protein stability under crowded conditions[J]. Biochemistry, 2010, 49(33):6984-6991. [74] KOCH K, AFONIN S, IERONIMO M, et al. Solid-state 19F NMR of peptides in native membranes[J]. Top Curr Chem, 2012, 306:89-118. [75] BERTRAND K, REVERDATTO S, BURZ D S, et al. Structure of proteins in eukaryotic compartments[J]. J Am Chem Soc, 2012, 134(30):12798-12806. [76] HAMATSU J, O'DONOVAN D, TANAKA T, et al. High-resolution heteronuclear multidimensional NMR of proteins in living insect cells using a baculovirus protein expression system[J]. J Am Chem Soc, 2013, 135(5):1688-1691. [77] BANCI L, BARBIERI L, BERTINI I, et al. Atomic-resolution monitoring of protein maturation in live human cells by NMR[J]. Nat Chem Biol, 2013, 9(5):297-299. [78] BANCI L, BARBIERI L, LUCHINAT E, et al. Visualization of redox-controlled protein fold in living cells[J]. Chem Biol, 2013, 20(6):747-752. [79] RAHMAN S, BYUN Y, HASSAN MI, et al. Towards understanding cellular structure biology:In-cell NMR[J]. BBA-Mol Basis Dis, 2017, 1865(5):547-557. [80] PIELAK G J, TIAN F. Membrane proteins, magic-angle spinning, and in-cell NMR[J]. P Natl Acad Sci USA, 2012, 109(13):4715-4716. [81] FREEDBERG DI, SELENKO P. Live Cell NMR[J]. Annu Rev Biophy, 2014, 43:171-192. [82] TOCHIO H. Watching protein structure at work in living cells using NMR spectroscopy[J]. Curr Opin Chem Biol, 2012, 16(5/6):609-613. [83] LI C G, WANG G F, WANG Y Q, et al. Protein 19F NMR in Escherichia coli[J]. J Am Chem Soc, 2010, 132(1):321. [84] BRINDLE K, WILLIAMS SP, BOULTON M. 19F NMR detection of a fluorine-labelled enzyme in vivo[J]. Febs Lett, 1989, 255(1):121-124. [85] TAKECHI-HARAYA Y, AKI K, TOHYAMA Y, et al. Glycosaminoglycan binding and non-endocytic membrane translocation of cell-permeable octaarginine monitored by real-time in-cell nmr spectroscopy[J]. Pharmaceuticals (Basel), 2017, 10(2):42. [86] LI D, ZHANG Y N, HE Y, et al. Protein-protein interaction analysis in crude bacterial lysates using combinational method of 19F site-specific incorporation and 19F NMR[J]. Protein Cell, 2017, 8(2):149-154. [87] YODER N C, KUMAR K. Fluorinated amino acids in protein design and engineering[J]. Chem Soc Rev, 2002, 31(6):335-341. [88] JACKEL C, KOKSCH B. Fluorine in peptide design and protein engineering[J]. Eur J Org Chem, 2010, 2010(21):4483-4503. [89] QIU X L, QING F L. Recent advances in the synthesis of fluorinated amino acids[J]. Eur J Org Chem, 2011, 2011(18):3261-3278. [90] SALWICZEK M, NYAKATURA EK, GERLING UIM, et al. Fluorinated amino acids:compatibility with native protein structures and effects on protein-protein interactions[J]. Chem Soc Rev, 2012, 41(6):2135-2171. [91] ODAR C, WINKLER M, WILTSCHI B. Fluoro amino acids:A rarity in nature, yet a prospect for protein engineering[J]. Biotechnol J, 2015, 10(3):427-446. [92] LIU Y X, ROSE J, HUANG S J, et al. A pH-gated conformational switch regulates the phosphatase activity of bifunctional HisKa-family histidine kinases[J]. Nat Commun, 2017, 8:2104. [93] KIRSCH P. Modern fluoroorganic chemistry:synthesis, reactivity, applications[M]. Wiley-VCH, 2006. [94] XIAO G Y, PARSONS J F, TESH K, et al. Conformational changes in the crystal structure of rat glutathione transferase M1-1 with global substitution of 3-fluorotyrosine for tyrosine[J]. J Mol Biol, 1998, 281(2):323-339. |
[1] | 葛玉玮, 刘买利, 甘哲宏, 李从刚. 质子化学位移各向异性的测量[J]. 波谱学杂志, 2018, 35(2): 255-267. |
[2] | 孙毅, 陈艳可, 李建平, 赵永祥, 杨俊. 固体核磁共振中膜蛋白双交叉极化效率与动力学参数相关的定量分析[J]. 波谱学杂志, 2017, 34(3): 257-265. |
[3] | 杨贤鹏, 俞豪杰, 王立. 二茂铁基化合物的ESR研究进展[J]. 波谱学杂志, 2016, 33(3): 491-501. |
[4] | 胡蕴菲1,2,何鹏1,3,吴宇杰1,3,金长文1,2,3,4*. 枯草芽孢杆菌双精氨酸转运系统TatAy 蛋白的溶液结构[J]. 波谱学杂志, 2015, 32(2): 291-307. |
[5] | 毕允晨, 王玉娟, 王俊峰. Nanodisc体系在膜蛋白结构与功能研究中的应用[J]. 波谱学杂志, 2011, 28(2): 177-189. |
[6] | 张毅, 刘祎, 孟大利, 李铣. 大环二芳基庚烷类化合物的波谱特征[J]. 波谱学杂志, 2010, 27(4): 669-677. |
[7] | 傅日强. 水化磷脂层中蛋白质和多肽的高分辨固体核磁共振波谱学[J]. 波谱学杂志, 2009, 26(4): 437-456. |
[8] | 邓益斌;季丹;周平. 磁共振技术在丝素蛋白结构与功能研究中的应用[J]. 波谱学杂志, 2008, 25(4): 555-571. |
[9] | 马俊鹤1,2 ; 郭晨1 ; 唐亚林3 ; 宋寒1,2 ; 刘会洲1 . PEO-PPO-PEO嵌段共聚物的NMR研究进展[J]. 波谱学杂志, 2008, 25(3): 421-434. |
[10] | 王俊美;欧阳捷;尚倩;邓志威. 土壤有机质研究中的核磁共振技术[J]. 波谱学杂志, 2008, 25(2): 287-295. |
[11] | 危佳1, 单璐1, 李维超2*. 新型超低温探头在分析与科研中的应用[J]. 波谱学杂志, 2007, 24(4): 526-534. |
[12] | 周志明, 刘买利, 张许, 叶朝辉. 提高生物大分子NMR分辨率和灵敏度的有效方法:TROSY和CRINEPT[J]. 波谱学杂志, 2004, 21(3): 371-383. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||