波谱学杂志 ›› 2024, Vol. 41 ›› Issue (1): 30-42.doi: 10.11938/cjmr20233071cstr: 32225.14.cjmr20233071
收稿日期:
2023-06-20
出版日期:
2024-03-05
在线发表日期:
2023-08-04
通讯作者:
Tel: 027-87199737, E-mail: 基金资助:
CHEN Lei*(),LIU Hongbing,LIU Huili,WANG Liying
Received:
2023-06-20
Published:
2024-03-05
Online:
2023-08-04
Contact:
Tel: 027-87199737, E-mail: 摘要:
以重聚INEPT(不灵敏核的重聚极化转移增强)脉冲序列为基础,采用模拟退火算法,优化得到极化转移和重聚时间参数集,建立定量重聚INEPT方法.序列中引入组合脉冲,克服射频场不均匀性和频率偏置效应的影响,提高检测的可靠性.进一步利用模拟退火优化,实现重聚INEPT的定量谱编辑.采用青蒿素、辛伐他丁等模型化合物对上述方法进行了验证,应用Case I极化时间参数集,定量积分的相对标准偏差分别为1.6%和3.3%,表明方法有效可靠,可满足定量检测的要求.在实际应用方面,采用定量重聚INEPT方法测定大豆油中脂肪酸含量,其结果与常规定量13C NMR测定的含量相符合,但检测时间显著减少.本文提出的定量重聚INEPT方法在石油、高分子等复杂体系的快速定量检测方面具有广泛的应用前景.
中图分类号:
陈雷, 刘红兵, 刘惠丽, 王立英. 基于模拟退火优化的定量重聚INEPT方法[J]. 波谱学杂志, 2024, 41(1): 30-42.
CHEN Lei, LIU Hongbing, LIU Huili, WANG Liying. Quantitative Refocused INEPT Method Based on Simulated Annealing Optimization[J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 30-42.
表1
青蒿素13C NMR谱的定量积分结果
编号 | 化学位移 | 基团 | 积分面积 | 倍数 | |
---|---|---|---|---|---|
zgig45 | Q-RINEPT | ||||
A1 | 93.74 | CH | 0.402±0.001 | 1.009±0.004 | 2.51 |
A2 | 50.08 | CH | 0.400±0.006 | 0.985±0.002 | 2.47 |
A3 | 44.97 | CH | 0.404±0.001 | 1.002±0.001 | 2.48 |
A4 | 37.54 | CH | 0.409±0.002 | 0.987±0.001 | 2.41 |
A5 | 35.92 | CH2 | 0.402±0.007 | 0.994±0.006 | 2.47 |
A6 | 33.61 | CH2 | 0.404±0.005 | 0.985±0.002 | 2.44 |
A7 | 32.92 | CH | 0.404±0.006 | 0.999±0.007 | 2.47 |
A8 | 25.23 | CH3 | 0.401±0.005 | 1.017±0.002 | 2.54 |
A9 | 24.86 | CH2 | 0.402±0.002 | 1.001±0.005 | 2.49 |
A10 | 23.42 | CH2 | 0.417±0.005 | 1.002±0.002 | 2.40 |
A11 | 19.86 | CH3 | 0.411±0.009 | 1.047±0.004 | 2.55 |
A12 | 12.60 | CH3 | 0.407±0.003 | 1.005±0.007 | 2.47 |
平均值±标准偏差 | 0.405±0.005 | 1.003±0.016 | 2.48 | ||
相对标准差 | 1.2% | 1.6% |
表2
辛伐他丁13C NMR谱的定量积分结果
编号 | 化学位移 | 基团 | 积分面积 | |||
---|---|---|---|---|---|---|
A | 平均值±标准偏差 | B | 平均值±标准偏差 | |||
S1 | 132.95 | CH | 1.002 | 0.976±0.033 | 0.871 | 0.875±0.027 |
S2 | 129.72 | CH | 0.993 | 0.913 | ||
S3 | 128.42 | CH | 0.990 | 0.896 | ||
S4 | 76.58 | CH | 0.970 | 0.877 | ||
S5 | 68.17 | CH | 1.035 | 0.887 | ||
S6 | 62.54 | CH | 0.910 | 0.804 | ||
S8 | 37.53 | CH | 0.995 | 0.872 | ||
S9 | 36.65 | CH | 0.945 | 0.873 | ||
S14 | 30.68 | CH | 0.957 | 0.874 | ||
S15 | 27.30 | CH | 0.965 | 0.884 | ||
S7 | 38.68 | CH2 | 0.936 | 0.970± 0.032 | 1.202 | 1.271±0.036 |
S10 | 36.12 | CH2 | 0.935 | 1.262 | ||
S11 | 33.05 | CH2 | 0.982 | 1.291 | ||
S12 | 33.01 | CH2 | 0.982 | 1.291 | ||
S13 | 32.90 | CH2 | 1.027 | 1.317 | ||
S18 | 24.36 | CH2 | 0.959 | 1.263 | ||
S16 | 24.83 | CH3 | 1.008 | 1.011±0.008 | 1.536 | 1.551±0.015 |
S17 | 24.81 | CH3 | 1.008 | 1.536 | ||
S19 | 23.10 | CH3 | 1.026 | 1.574 | ||
S20 | 13.93 | CH3 | 1.012 | 1.545 | ||
S21 | 9.39 | CH3 | 1.001 | 1.565 |
表3
大豆油Q-RINEPT 13C谱中特征峰的化学位移和归属
序号 | 化学位移 | 归属 | 序号 | 化学位移 | 归属 | |
---|---|---|---|---|---|---|
1 | 131.89 | Ln:C16(=CH) | 15 | 34.19, 34.05, 34.02 | C2 (-OC-CH2-) | |
2 | 130.17 | Ln:C9(=CH) | 16 | 31.98, 31.96 | -CH2-CH2-CH3 | |
3 | 130.15 | L:C13(=CH) | 17 | 31.57 | L:C16(-CH2-CH2-CH3) | |
4 | 130.00, 129.98 | O:C10(=CH) | 18 | 29.87~28.99 | -(CH2)- | |
5 | 129.95, 129.93 | L:C9(=CH) | 19 | 27.30~27.15 | =CH-CH2-CH2- | |
6 | 129.69, 129.67 | O:C9(=CH) | 20 | 25.66 | L:C11 (=CH-CH2-HC=) | |
7 | 128.27 | Ln:C13(=CH) | 21 | 25.64 | Ln:C11 (=CH-CH2-HC=) | |
8 | 128.23, 128.22 | Ln:C12(=CH) | 22 | 25.56 | Ln:C14 (=CH-CH2-HC=) | |
9 | 128.10, 128.09 | L:C10(=CH) | 23 | 24.90, 24.87 | C3(-OC-CH2-CH2-) | |
10 | 127.93, 127.91 | L:C12(=CH) | 24 | 22.73 | -CH2-CH3 | |
11 | 127.79, 127.78 | Ln:C10(=CH) | 25 | 22.62 | L:C17 (-CH2-CH3) | |
12 | 127.14 | Ln:C15(=CH) | 26 | 20.58 | Ln:C17 (-CH2-CH3) | |
13 | 68.94 | 甘油基, -OCH | 27 | 14.30 | Ln:C18 (-CH3) | |
14 | 62.10 | 甘油基, -OCH2 | 28 | 14.14, 14.10 | -CH3 |
[1] |
RANDALL J C. A review of high resolution liquid 13carbon nuclear magnetic resonance characterzations of ethylene-based polymers[J]. J Macromol Sci C, 1989, 29(2-3): 201-317.
doi: 10.1080/07366578908055172 |
[2] |
CLENDINEN C S, LEE-MCMULLEN B, WILLIAMS C M, et al. 13C NMR metabolomics: applications at natural abundance[J]. Anal Chem, 2014, 86(18): 9242-9250.
doi: 10.1021/ac502346h |
[3] |
OTTE D A L, BORCHMANN D E, LIN C, et al. 13C NMR spectroscopy for the quantitative determination of compound ratios and polymer end groups[J]. Org Lett, 2014, 16(6): 1566-1569.
doi: 10.1021/ol403776k pmid: 24601654 |
[4] | DODDRELL D M, PEGG D T, BENDALL M R. Distortionless enhancement of nmr signals by polarization transfer[J]. J Magn Reson, 1982, 48(2): 323-327. |
[5] | PRIMASOVA H, BIGLER P, FURRER J. The DEPT experiment and some of its useful variants[J]. J Annu Rep NMR Spectrosc, 2017, 92: 1-82. |
[6] |
MORRIS G A, FREEMAN R. Enhancement of nuclear magnetic resonance signals by polarization transfer[J]. J Am Chem Soc, 1979, 101(3): 760-762.
doi: 10.1021/ja00497a058 |
[7] | BURUM D P, ERNST R R. Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei[J]. J Magn Reson, 1980, 39(1): 163-168. |
[8] |
HEIKKINEN S, TOIKKA M M, KARHUNEN P T, et al. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin[J]. J Am Chem Soc, 2003, 125(14): 4362-4367.
doi: 10.1021/ja029035k |
[9] |
HENDERSON T J. Sensitivity-enhanced quantitative 13C NMR spectroscopy via cancellation of 1JCH dependence in DEPT polarization transfers[J]. J Am Chem Soc, 2004, 126(12): 3682-3683.
doi: 10.1021/ja039261+ |
[10] |
JIANG B, XIAO N, LIU H, et al. Optimized quantitative dept and quantitative pommie experiments for 13C NMR[J]. Anal Chem, 2008, 80(21): 8293-8298.
doi: 10.1021/ac8015455 |
[11] | SONG L H, CHAI X, ZHANG X, et al. Optimization for sensitivity-enhanced quantitative 13C NMR experiment by genetic algorithm[J]. Chinese J Magn Reson, 2023, 40(4): 365-375. |
宋林红, 柴鑫, 张许, 等. 用遗传算法优化灵敏度增强的定量13C NMR实验[J]. 波谱学杂志, 2023, 40(4): 365-375. | |
[12] | SǾRENSEN O W, ERNST R R. Elimination of spectral distortion in polarization transfer experiments. improvements and comparison of techniques[J]. J Magn Reson, 1983, 51(3): 477-489. |
[13] | LI Y Y, SUN P, LIU M L, et al. Distortionless quantitative 13C DEPT++ experiment[J]. Chinese J Magn Reson, 2015, 32(1): 51-58. |
[14] | 李云燕, 孙鹏, 刘买利, 等. 无谱峰畸变的定量13C DEPT++谱研究[J]. 波谱学杂志, 2015, 32(1): 51-58. |
[15] |
LI Y, MAO W, LIU C, et al. Quantitative determination of fatty acid compositions in edible oils using J-Selective 13C QDEPT[J]. Food Anal Method, 2019, 12(4): 991-997.
doi: 10.1007/s12161-019-01432-8 |
[16] |
MÄKELÄ A V, KILPELÄINEN I, HEIKKINEN S. Quantitative 13C NMR spectroscopy using refocused constant-time INEPT, Q-INEPT-CT[J]. J Magn Reson, 2010, 204(1): 124-130.
doi: 10.1016/j.jmr.2010.02.015 |
[17] |
MANU V S, KUMAR A. Fast and accurate quantification using genetic algorithm optimized 1H-13C refocused constant-time INEPT[J]. J Magn Reson, 2013, 234: 106-111.
doi: 10.1016/j.jmr.2013.06.013 |
[18] |
HOU J, HE Y, QIU X. Speedy, Robust and quantitative analysis of polyolefins using sensitivity-enhanced 13C NMR spectroscopy[J]. Macromol, 2017, 50(6): 2407-2414.
doi: 10.1021/acs.macromol.7b00193 |
[19] |
SABATINO P, GAO M, HOU J. Quantitative adiabatic-refocused INEPT (QA-RINEPT) as a tool for fast and reliable characterization of polyols[J]. Magn Reson Chem, 2018, 56(12): 1149-1157.
doi: 10.1002/mrc.v56.12 |
[20] | 涂艳艳. QA-RINEPT+及原位核磁检测在聚合物分析中的应用[D]. 苏州大学, 2021. |
[21] | SHAKA A J, BARKER P B, FREEMAN R. Experimental demonstration of wideband spin inversion[J]. J Magn Reson, 1986, 67(3): 580-584. |
[22] | Berger S, Braun S. 200 and more NMR experiments: a practical course[M]. Weinheim: Wily-VCH, 2004 |
[23] | BALCI M. Basic 1H- and 13C-NMR spectroscopy[M]. Amsterdam: Elsevier Science, 2005. |
[24] | 邢文训, 谢金星. 现代优化计算方法(第二版)[M]. 北京: 清华大学出版社, 2005. |
[25] |
BLASKÓ G, CORDELL G A, LANKIN D C. Definitive 1H- and 13C-NMR assignments of artemisinin (qinghaosu)[J]. J Nat Prod, 1988, 51(6): 1273-1276.
doi: 10.1021/np50060a040 |
[26] | LIU C H, LIU H, CHEN L F, et al. Spectral data analysis and identifiication of simvastatin[J]. Chinese J Anal Chem, 2005, 33(7): 985-988. |
刘春河, 刘河, 陈兰福, 等. 辛伐他汀的波谱学数据和结构确证[J]. 分析化学, 2005, 33(7): 985-988. | |
[27] | 王兴国, 金青哲. 油脂化学[M]. 北京: 科学出版社, 2012. |
[28] | 国家食品药品监督管理总局. 食品安全国家标准食品中脂肪酸的测定:GB 5009.168-2016[S]. 北京: 中国标准出版社, 2016. |
[29] | HU B H, YUAN H Z, GUO J X, et al. Determination of plant oils by 1H and 13C NMR[J]. Chinese J Magn Reson, 1993, 10(3): 251-259. |
胡邦豪, 袁汉珍, 郭建新, 等. 植物油的1H NMR和13C NMR的测定[J]. 波谱学杂志, 1993, 10(3): 251-259. | |
[30] |
SACCHI R, ADDEO F, PAOLILLO L. 1H and 13C NMR of virgin olive oil. an overview[J]. Magn Reson Chem, 1997, 35(13): S133-S145.
doi: 10.1002/(ISSN)1097-458X |
[31] |
MERCHAK N, RIZK T, SILVESTRE V, et al. Olive oil characterization and classification by 13C NMR with a polarization transfer technique: A comparison with gas chromatography and 1H NMR[J]. Food Chem, 2018, 245: 717-723.
doi: 10.1016/j.foodchem.2017.12.005 |
[32] |
LI T B, WU Y, LUO J. Quantitative analysis of fatty acids and water in vegetable oils by nuclear magnetic resonance[J]. Food Sci, 2014, 35(16): 212-216.
doi: 10.7506/spkx1002-6630-201416041 |
李添宝, 吴越, 罗敬. 利用核磁共振法定量分析植物油中多种脂肪酸及水含量[J]. 食品科学, 2014, 35(16): 212-216.
doi: 10.7506/spkx1002-6630-201416041 |
|
[33] | XIAO K, GONG C, GUO Q S, et al. Simultaneous determination of fatty acids at sn-1,3 and sn-2 of triglyceride in edible oils by quantitative 13C-nuclear magnetic resonance[J]. Chinese J Anal Chem, 2020, 48(6): 802-812. |
肖坤, 龚灿, 郭强胜, 等. 定量核磁共振碳谱同时测定食用油中甘油三酯的sn-1,3和sn-2脂肪酸含量[J]. 分析化学, 2020, 48(6): 802-812. | |
[34] |
MERCHAK N, SILVESTRE V, LOQUET D, et al. A strategy for simultaneous determination of fatty acid composition, fatty acid position, and position-specific isotope contents in triacylglycerol matrices by 13C-NMR[J]. Anal Bioanal Chem, 2017, 409(1): 307-315.
doi: 10.1007/s00216-016-0005-z |
[35] | CHIRA N, NICOLESCU A, RALUCA S, et al. Fatty acid composition of vegetable oils determined from 13C-NMR spectra[J]. Revi Chim (Bucharest), 2016, 67(7): 1257-1263. |
[36] |
VLAHOV G, GIULIANI A A, DEL RE P. 13C NMR spectroscopy for determining the acylglycerol positional composition of lampante olive oils. Chemical shift assignments and their dependence on sample concentration[J]. Anal Method, 2010, 2(7): 916-923.
doi: 10.1039/c0ay00028k |
[37] |
RETIEF L, MCKENZIE J M, KOCH K R. A novel approach to the rapid assignment of 13C NMR spectra of major components of vegetable oils such as avocado, mango kernel and macadamia nut oils[J]. Magn Reson Chem, 2009, 47(9): 771-781.
doi: 10.1002/mrc.v47:9 |
[38] | MA L L, ZHAO H. Application of NMR in structural characterization of polyether polyols[J]. Polyu Indus, 2017, 32(5): 69-71 |
马丽丽, 赵航. NMR在聚醚多元醇结构表征中的应用[J]. 聚氨酯工业, 2017, 32(5): 69-71. |
[1] | 宋林红, 柴鑫, 张许, 蒋滨, 刘买利. 用遗传算法优化灵敏度增强的定量13C NMR实验[J]. 波谱学杂志, 2023, 40(4): 365-375. |
[2] | 赵蓓蓓, 占建华, 胡琴, 朱勤俊, 刘买利, 张许. 细胞色素c甲硫氨酸氧化机制的NMR研究[J]. 波谱学杂志, 2023, 40(3): 246-257. |
[3] | 陈雷,刘红兵,刘惠丽. 定量NMR中多种检出限评估方法的比较[J]. 波谱学杂志, 2022, 39(2): 230-242. |
[4] | 史朝为,石攀,田长麟. 非天然氨基酸在蛋白质动态特性核磁共振研究中的应用[J]. 波谱学杂志, 2021, 38(4): 523-532. |
[5] | 张书怀,马慧,郭朝晖,马敏珺,乔岩,王英雄. 正丁醇/丙酸与腐殖酸相互作用的NMR研究[J]. 波谱学杂志, 2021, 38(3): 301-312. |
[6] | 随松,高国梁,王雪璐,魏达秀,姚叶锋. 固-液-气三相环境下非均相苯加氢反应的原位核磁共振研究[J]. 波谱学杂志, 2021, 38(2): 194-203. |
[7] | 窦梦雨,赵奇,侯相林,刘雷,唐明兴,王英雄. 蒽加氢产物的结构指认和定量核磁共振分析[J]. 波谱学杂志, 2021, 38(2): 239-248. |
[8] | 黄珊珊, 姚叶锋, 李鹏, 何培忠. 液体核磁共振 HSQC 实验的量子化学计算与模拟[J]. 波谱学杂志, 2021, 38(1): 32-42. |
[9] | 李玉江, 赵伟, 郭晓河, 陶乐, 张祥, 张海艳, 赵天增. 盐酸马尼地平的核磁共振数据解析[J]. 波谱学杂志, 2021, 38(1): 110-117. |
[10] | 王睿迪, 徐贝贝, 宋艳红, 王雪璐, 姚叶锋. 原位核磁共振技术研究光催化甲醇重整过程中甲醇与水的相互作用[J]. 波谱学杂志, 2021, 38(1): 43-57. |
[11] | 周中高, 谢倩, 元洋洋, 李静, 路东亮, 陈正旺. 吡喃葡糖基氮杂环卡宾-钯(II)-吡啶配合物的NMR研究[J]. 波谱学杂志, 2020, 37(4): 505-514. |
[12] | 杨以宁, 王雪璐, 姚叶锋. 原位核磁共振技术研究反应环境对光催化甲醇重整过程的影响[J]. 波谱学杂志, 2020, 37(1): 104-113. |
[13] | 宁彩芳, 马敏珺, 郭朝晖, 张书怀, 乔岩, 王英雄. PAMAM树状大分子与5-氟尿嘧啶相互作用的NMR研究[J]. 波谱学杂志, 2019, 36(4): 555-562. |
[14] | 林晓晴, 李弘, 詹昊霖, 杜世佳, 黄玉清, 陈忠. 高分辨率核磁共振纯化学位移谱新方法及其应用[J]. 波谱学杂志, 2019, 36(4): 425-436. |
[15] | 刘文卿, 宋艳红, 王雪璐, 姚叶锋. 光催化甲醇重整机理的原位核磁共振研究[J]. 波谱学杂志, 2019, 36(3): 298-308. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 210
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 115
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||