[1] |
RANDALL J C. A review of high resolution liquid 13carbon nuclear magnetic resonance characterzations of ethylene-based polymers[J]. J Macromol Sci C, 1989, 29(2-3): 201-317.
doi: 10.1080/07366578908055172
|
[2] |
CLENDINEN C S, LEE-MCMULLEN B, WILLIAMS C M, et al. 13C NMR metabolomics: applications at natural abundance[J]. Anal Chem, 2014, 86(18): 9242-9250.
doi: 10.1021/ac502346h
|
[3] |
OTTE D A L, BORCHMANN D E, LIN C, et al. 13C NMR spectroscopy for the quantitative determination of compound ratios and polymer end groups[J]. Org Lett, 2014, 16(6): 1566-1569.
doi: 10.1021/ol403776k
pmid: 24601654
|
[4] |
DODDRELL D M, PEGG D T, BENDALL M R. Distortionless enhancement of nmr signals by polarization transfer[J]. J Magn Reson, 1982, 48(2): 323-327.
|
[5] |
PRIMASOVA H, BIGLER P, FURRER J. The DEPT experiment and some of its useful variants[J]. J Annu Rep NMR Spectrosc, 2017, 92: 1-82.
|
[6] |
MORRIS G A, FREEMAN R. Enhancement of nuclear magnetic resonance signals by polarization transfer[J]. J Am Chem Soc, 1979, 101(3): 760-762.
doi: 10.1021/ja00497a058
|
[7] |
BURUM D P, ERNST R R. Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei[J]. J Magn Reson, 1980, 39(1): 163-168.
|
[8] |
HEIKKINEN S, TOIKKA M M, KARHUNEN P T, et al. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin[J]. J Am Chem Soc, 2003, 125(14): 4362-4367.
doi: 10.1021/ja029035k
|
[9] |
HENDERSON T J. Sensitivity-enhanced quantitative 13C NMR spectroscopy via cancellation of 1JCH dependence in DEPT polarization transfers[J]. J Am Chem Soc, 2004, 126(12): 3682-3683.
doi: 10.1021/ja039261+
|
[10] |
JIANG B, XIAO N, LIU H, et al. Optimized quantitative dept and quantitative pommie experiments for 13C NMR[J]. Anal Chem, 2008, 80(21): 8293-8298.
doi: 10.1021/ac8015455
|
[11] |
SONG L H, CHAI X, ZHANG X, et al. Optimization for sensitivity-enhanced quantitative 13C NMR experiment by genetic algorithm[J]. Chinese J Magn Reson, 2023, 40(4): 365-375.
|
|
宋林红, 柴鑫, 张许, 等. 用遗传算法优化灵敏度增强的定量13C NMR实验[J]. 波谱学杂志, 2023, 40(4): 365-375.
|
[12] |
SǾRENSEN O W, ERNST R R. Elimination of spectral distortion in polarization transfer experiments. improvements and comparison of techniques[J]. J Magn Reson, 1983, 51(3): 477-489.
|
[13] |
LI Y Y, SUN P, LIU M L, et al. Distortionless quantitative 13C DEPT++ experiment[J]. Chinese J Magn Reson, 2015, 32(1): 51-58.
|
[14] |
李云燕, 孙鹏, 刘买利, 等. 无谱峰畸变的定量13C DEPT++谱研究[J]. 波谱学杂志, 2015, 32(1): 51-58.
|
[15] |
LI Y, MAO W, LIU C, et al. Quantitative determination of fatty acid compositions in edible oils using J-Selective 13C QDEPT[J]. Food Anal Method, 2019, 12(4): 991-997.
doi: 10.1007/s12161-019-01432-8
|
[16] |
MÄKELÄ A V, KILPELÄINEN I, HEIKKINEN S. Quantitative 13C NMR spectroscopy using refocused constant-time INEPT, Q-INEPT-CT[J]. J Magn Reson, 2010, 204(1): 124-130.
doi: 10.1016/j.jmr.2010.02.015
|
[17] |
MANU V S, KUMAR A. Fast and accurate quantification using genetic algorithm optimized 1H-13C refocused constant-time INEPT[J]. J Magn Reson, 2013, 234: 106-111.
doi: 10.1016/j.jmr.2013.06.013
|
[18] |
HOU J, HE Y, QIU X. Speedy, Robust and quantitative analysis of polyolefins using sensitivity-enhanced 13C NMR spectroscopy[J]. Macromol, 2017, 50(6): 2407-2414.
doi: 10.1021/acs.macromol.7b00193
|
[19] |
SABATINO P, GAO M, HOU J. Quantitative adiabatic-refocused INEPT (QA-RINEPT) as a tool for fast and reliable characterization of polyols[J]. Magn Reson Chem, 2018, 56(12): 1149-1157.
doi: 10.1002/mrc.v56.12
|
[20] |
涂艳艳. QA-RINEPT+及原位核磁检测在聚合物分析中的应用[D]. 苏州大学, 2021.
|
[21] |
SHAKA A J, BARKER P B, FREEMAN R. Experimental demonstration of wideband spin inversion[J]. J Magn Reson, 1986, 67(3): 580-584.
|
[22] |
Berger S, Braun S. 200 and more NMR experiments: a practical course[M]. Weinheim: Wily-VCH, 2004
|
[23] |
BALCI M. Basic 1H- and 13C-NMR spectroscopy[M]. Amsterdam: Elsevier Science, 2005.
|
[24] |
邢文训, 谢金星. 现代优化计算方法(第二版)[M]. 北京: 清华大学出版社, 2005.
|
[25] |
BLASKÓ G, CORDELL G A, LANKIN D C. Definitive 1H- and 13C-NMR assignments of artemisinin (qinghaosu)[J]. J Nat Prod, 1988, 51(6): 1273-1276.
doi: 10.1021/np50060a040
|
[26] |
LIU C H, LIU H, CHEN L F, et al. Spectral data analysis and identifiication of simvastatin[J]. Chinese J Anal Chem, 2005, 33(7): 985-988.
|
|
刘春河, 刘河, 陈兰福, 等. 辛伐他汀的波谱学数据和结构确证[J]. 分析化学, 2005, 33(7): 985-988.
|
[27] |
王兴国, 金青哲. 油脂化学[M]. 北京: 科学出版社, 2012.
|
[28] |
国家食品药品监督管理总局. 食品安全国家标准食品中脂肪酸的测定:GB 5009.168-2016[S]. 北京: 中国标准出版社, 2016.
|
[29] |
HU B H, YUAN H Z, GUO J X, et al. Determination of plant oils by 1H and 13C NMR[J]. Chinese J Magn Reson, 1993, 10(3): 251-259.
|
|
胡邦豪, 袁汉珍, 郭建新, 等. 植物油的1H NMR和13C NMR的测定[J]. 波谱学杂志, 1993, 10(3): 251-259.
|
[30] |
SACCHI R, ADDEO F, PAOLILLO L. 1H and 13C NMR of virgin olive oil. an overview[J]. Magn Reson Chem, 1997, 35(13): S133-S145.
doi: 10.1002/(ISSN)1097-458X
|
[31] |
MERCHAK N, RIZK T, SILVESTRE V, et al. Olive oil characterization and classification by 13C NMR with a polarization transfer technique: A comparison with gas chromatography and 1H NMR[J]. Food Chem, 2018, 245: 717-723.
doi: 10.1016/j.foodchem.2017.12.005
|
[32] |
LI T B, WU Y, LUO J. Quantitative analysis of fatty acids and water in vegetable oils by nuclear magnetic resonance[J]. Food Sci, 2014, 35(16): 212-216.
doi: 10.7506/spkx1002-6630-201416041
|
|
李添宝, 吴越, 罗敬. 利用核磁共振法定量分析植物油中多种脂肪酸及水含量[J]. 食品科学, 2014, 35(16): 212-216.
doi: 10.7506/spkx1002-6630-201416041
|
[33] |
XIAO K, GONG C, GUO Q S, et al. Simultaneous determination of fatty acids at sn-1,3 and sn-2 of triglyceride in edible oils by quantitative 13C-nuclear magnetic resonance[J]. Chinese J Anal Chem, 2020, 48(6): 802-812.
|
|
肖坤, 龚灿, 郭强胜, 等. 定量核磁共振碳谱同时测定食用油中甘油三酯的sn-1,3和sn-2脂肪酸含量[J]. 分析化学, 2020, 48(6): 802-812.
|
[34] |
MERCHAK N, SILVESTRE V, LOQUET D, et al. A strategy for simultaneous determination of fatty acid composition, fatty acid position, and position-specific isotope contents in triacylglycerol matrices by 13C-NMR[J]. Anal Bioanal Chem, 2017, 409(1): 307-315.
doi: 10.1007/s00216-016-0005-z
|
[35] |
CHIRA N, NICOLESCU A, RALUCA S, et al. Fatty acid composition of vegetable oils determined from 13C-NMR spectra[J]. Revi Chim (Bucharest), 2016, 67(7): 1257-1263.
|
[36] |
VLAHOV G, GIULIANI A A, DEL RE P. 13C NMR spectroscopy for determining the acylglycerol positional composition of lampante olive oils. Chemical shift assignments and their dependence on sample concentration[J]. Anal Method, 2010, 2(7): 916-923.
doi: 10.1039/c0ay00028k
|
[37] |
RETIEF L, MCKENZIE J M, KOCH K R. A novel approach to the rapid assignment of 13C NMR spectra of major components of vegetable oils such as avocado, mango kernel and macadamia nut oils[J]. Magn Reson Chem, 2009, 47(9): 771-781.
doi: 10.1002/mrc.v47:9
|
[38] |
MA L L, ZHAO H. Application of NMR in structural characterization of polyether polyols[J]. Polyu Indus, 2017, 32(5): 69-71
|
|
马丽丽, 赵航. NMR在聚醚多元醇结构表征中的应用[J]. 聚氨酯工业, 2017, 32(5): 69-71.
|