[1] |
KIM H C, YIM D-G, KIM J W, et al. Nuclear magnetic resonance (NMR)-based quantification on flavor-active and bioactive compounds and application for distinguishment of chicken breeds[J]. Food Sci Anim Resour, 2021, 41(2): 312-323.
doi: 10.5851/kosfa.2020.e102
pmid: 33987551
|
[2] |
XIAO K, GONG C, GUO Q S, et al. Simultaneous determination of fatty acids at sn-1,3 and sn-2 of triglyceride in edible oils by quantitative C-13-nuclear magnetic resonance[J]. Chinese Journal of Analytical Chemistry, 2020, 48(6): 802-810.
|
|
肖坤, 龚灿, 郭强胜, 等. 定量核磁共振碳谱同时测定食用油中甘油三酯的sn-1,3和sn-2脂肪酸含量[J]. 分析化学, 2020, 48(6): 802-810.
|
[3] |
LI Y, MAO W, LIU C, et al. Quantitative determination of fatty acid compositions in edible oils using J-selective 13C QDEPT[J]. Food Anal Method, 2019, 12(4): 991-997.
doi: 10.1007/s12161-019-01432-8
|
[4] |
COLOMBO C, AUPIC C, LEWIS A R, et al. In situ determination of fructose isomer concentrations in wine using 13C quantitative nuclear magnetic resonance spectroscopy[J]. J Agr Food Chem, 2015, 63(38): 8551-8559.
doi: 10.1021/acs.jafc.5b03641
|
[5] |
WANG X H, SUN P, ZHANG X, et al. Application of magnetic resonance technique to quality and safety evaluation of food[J]. Chinese J Magn Reson, 2017, 34(2): 245-256.
|
|
王小花, 孙鹏, 张许, 等. 磁共振技术在食品质量与安全研究中的应用[J]. 波谱学杂志, 2017, 34(2): 245-256.
|
[6] |
GRADL K, TAIBON J, SINGH N, et al. An isotope dilution LC-MS/MS-based candidate reference method for the quantification of androstenedione in human serum and plasma[J]. Clin Mass Spectrom, 2020, 16: 1-10.
doi: 10.1016/j.clinms.2020.01.003
pmid: 34820514
|
[7] |
SERRANO J N P, BENEDITO L E C, DE SOUZA M P, et al. Quantitative NMR as a tool for analysis of new psychoactive substances[J]. Forensic Chem, 2020, 218.
|
[8] |
CHOULES M P, KLEIN L L, LANKIN D C, et al. Residual complexity does impact organic chemistry and drug discovery: The case of rufomyazine and rufomycin[J]. J Org Chem, 2018, 83(12): 6664-6672.
doi: 10.1021/acs.joc.8b00988
pmid: 29792329
|
[9] |
KAUFMANN M, MUGGE C, KROH L W. Theory of the milieu dependent isomerisation dynamics of reducing sugars applied to D-erythrose[J]. Carbohyd Res, 2015, 418: 89-97.
doi: S0008-6215(15)00333-X
pmid: 26580710
|
[10] |
WANG X, YANG Y, ZHONG H, et al. Molecular H2O promoted catalytic bicarbonate reduction with methanol into formate over Pd0.5Cu0.5/C under mild hydrothermal conditions[J]. Green Chem, 2021, 23(1): 430-439.
doi: 10.1039/D0GC02785E
|
[11] |
SOLOVYOV A, YABUSHITA M, KATZ A. Mechanical control of rate processes: Effect of ligand steric bulk on CO exchange in trisubstituted tetrairidium cluster catalysts[J]. J Phys Chem C, 2020, 124(48): 26279-26286.
doi: 10.1021/acs.jpcc.0c07962
|
[12] |
CERCEAU C I, BARBOSA L C A, ALVARENGA E S, et al. A validated 1H NMR method for quantitative analysis of α-bisabolol in essential oils of Eremanthus erythropappus[J]. Talanta, 2016, 161: 71-79.
doi: 10.1016/j.talanta.2016.08.032
|
[13] |
VIOLANTE F G M, WOLLINGER W, GUIMARãES E F, et al. Use of quantitative 1H and 13C NMR to determine the purity of organic compound reference materials: a case study of standards for nitrofuran metabolites[J]. Anal Bioanal Chem, 2021, 413(6): 1701-1714.
doi: 10.1007/s00216-020-03134-1
|
[14] |
KEMPRAI P, MAHANTA B P, BORA P K, et al. A 1H NMR spectroscopic method for the quantification of propenylbenzenes in the essential oils: Evaluation of key odorants, antioxidants and post-harvest drying techniques for Piper betle L[J]. Food Chem, 2020, 331: 127278.
doi: 10.1016/j.foodchem.2020.127278
|
[15] |
MARCHETTI L, BRIGHENTI V, ROSSI M, et al. Use of 13C-qNMR spectroscopy for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (Hemp)[J]. Molecules, 2019, 24(6): 1138.
doi: 10.3390/molecules24061138
|
[16] |
LANKHORST P, VAN RIJN J, DUCHATEAU A. One-dimensional 13C NMR is a simple and highly quantitative method for enantiodiscrimination[J]. Molecules, 2018, 23(7): 1785.
doi: 10.3390/molecules23071785
|
[17] |
LIU L H, JIANG B, CHEN D X, et al. The status and challenge of the domestic manufacturing of superconduct magnetic resonance instruments in China[J]. Chinese J Magn Reson, 2022, 39(03): 345-355.
|
|
刘莲花, 蒋滨, 陈代谢, 等. 超导磁共振仪器设备国产化现状及挑战[J]. 波谱学杂志, 2022, 39(03): 345-355.
|
[18] |
HUANG X, ZHANG Z L, HU X N, et al. Research progresses concerning the superconducting joints used in nuclear magnetic resonance magnets[J]. Chinese J Magn Reson, 2021, 38(03): 424-432.
|
|
黄兴, 张子立, 胡新宁, 等. 核磁共振磁体超导接头工艺研究进展[J]. 波谱学杂志, 2021, 38(03): 424-432.
|
[19] |
OVERHAUSER A W. Polarization of nuclei in metals[J]. Phys Rev, 1953, 92(2): 411-415.
doi: 10.1103/PhysRev.92.411
|
[20] |
MORRIS G A, FREEMAN R. Enhancement of nuclear magnetic-resonance signals by polarization transfer[J]. J Am Chem Soc, 1979, 101(3): 760-762.
doi: 10.1021/ja00497a058
|
[21] |
DODDRELL D, PEGG D, BENDALL M R. Distortionless enhancement of NMR signals by polarization transfer[J]. J Magn Reson (1969), 1982, 48(2): 323-327.
|
[22] |
BODENHAUSEN G, RUBEN D J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy[J]. Chem Phys Lett, 1980, 69(1): 185-189.
doi: 10.1016/0009-2614(80)80041-8
|
[23] |
HEIKKINEN S, TOIKKA M M, KARHUNEN P T, et al. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: Application to wood lignin[J]. J Am Chem Soc, 2003, 125(14): 4362-4367.
pmid: 12670260
|
[24] |
HENDERSON T J. Sensitivity-enhanced quantitative 13C NMR spectroscopy via cancellation of 1JCH dependence in DEPT polarization transfers[J]. J Am Chem Soc, 2004, 126(12): 3682-3683.
doi: 10.1021/ja039261+
|
[25] |
FRIEBOLIN H, BECCONSALL J K. Basic one-and two-dimensional NMR spectroscopy[M]. Wiley-vch Weinheim, 2005.
|
[26] |
JIANG B, XIAO M, LIU H L, et al. Optimized quantitative DEPT and quantitative POMMIE experiments for 13C NMR[J]. Anal Chem, 2008, 80(21): 8293-8298.
doi: 10.1021/ac8015455
|
[27] |
MLAB[EB/OL]. https://www.civilized.com.
|
[28] |
MÄKELÄ A V, KILPELÄINEN I, HEIKKINEN S. Quantitative 13C NMR spectroscopy using refocused constant-time INEPT, Q-INEPT-CT[J]. J Magn Reson, 2010, 204(1): 124-130.
doi: 10.1016/j.jmr.2010.02.015
|
[29] |
SHAKA A J. Composite pulses for ultra-broadband spin inversion[J]. Chem Phys Lett, 1985, 120(2): 201-205.
doi: 10.1016/0009-2614(85)87040-8
|
[30] |
MANU V S, KUMAR A. Fast and accurate quantification using Genetic Algorithm optimized 1H-13C refocused constant-time INEPT[J]. J Magn Reson, 2013, 234: 106-111.
doi: 10.1016/j.jmr.2013.06.013
|
[31] |
HOLLAND J H. Outline for a logical theory of adaptive systems[J]. J ACM, 1962, 9(3): 297-314.
doi: 10.1145/321127.321128
|
[32] |
HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. MIT press, 1992.
|
[33] |
BECHMANN M, CLARK J, SEBALD A. Genetic algorithms and solid state NMR pulse sequences[J]. J Magn Reson, 2013, 228: 66-75.
doi: 10.1016/j.jmr.2012.12.015
pmid: 23357428
|
[34] |
PANG Y, SHEN G X. Improving excitation and inversion accuracy by optimized RF pulse using genetic algorithm[J]. J Magn Reson, 2007, 186(1): 86-93.
pmid: 17379555
|
[35] |
RAY FREEMAN W X. Design of magnetic resonance experiments by genetic[J]. J Magn Reson, 1987, 75(1): 184-189.
|
[36] |
MANU V S, VEGLIA G. Genetic algorithm optimized triply compensated pulses in NMR spectroscopy[J]. J Magn Reson, 2015, 260: 136-143.
doi: 10.1016/j.jmr.2015.09.010
pmid: 26473327
|
[37] |
XIA Y, ROSSI P, SUBRAHMANIAN M V, et al. Enhancing the sensitivity of multidimensional NMR experiments by using triply-compensated π pulses[J]. J Biomol NMR, 2017, 69(4): 237-243.
doi: 10.1007/s10858-017-0153-2
pmid: 29164453
|
[38] |
KEELER J. Understanding NMR spectroscopy[M]. 2rd Edition ed.ed. the United States: Wiley, 2010.
|
[39] |
LEVITT M H. Spin dynamics basics of nuclear magnetic resonance[M]. 2nd edition ed. the United States: Wiley, 2007.
|
[40] |
FREEMAN R, HILL H, KAPTEIN R. Proton-decoupled NMR. Spectra of carbon-13 with the nuclear overhauser effect suppressed[J]. J Magn Reson (1969), 1972, 7(3): 327-329.
|
[41] |
Spectral Database for Organic Compounds (SDBS)[EB/OL]. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.
|