1 |
PORWAL G , GUPTA S , SREEDHALA S , et al. Mechanistic insights into the pathways of phenol hydrogenation on Pd nanostructures[J]. ACS Sustainable Chem Eng, 2019, 7 (20): 17126- 17136.
doi: 10.1021/acssuschemeng.9b03392
|
2 |
FOPPA L , DUPONT J . Benzene partial hydrogenation: advances and perspectives[J]. Chem Soc Rev, 2015, 44 (7): 1886- 1897.
doi: 10.1039/C4CS00324A
|
3 |
SÁNCHEZ V M , COJULUN J A , SCHERLIS D A . Dissociation free energy profiles for water and methanol on TiO2 surfaces[J]. Chem Soc Rev, 2010, 114 (26): 11522- 11526.
|
4 |
ZHANG W P , XU S T , HAN X W , et al. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach[J]. Chem Soc Rev, 2012, 41 (1): 192- 210.
doi: 10.1039/C1CS15009J
|
5 |
XU S T , ZHANG W P , LIU X C , et al. Enhanced in situ continuous-flow MAS NMR for reaction kinetics in the nanocages[J]. J Am Chem Soc, 2009, 131 (38): 13722- 13727.
doi: 10.1021/ja904304h
|
6 |
TONG Y Y , WIEKOWSKI A , OLDFIELD E . NMR of electrocatalysts[J]. J Phys Chem B, 2002, 106 (10): 2434- 2446.
doi: 10.1021/jp0129939
|
7 |
CHAN K W H , WIECKOWSKI A . Probing adsorbates on Pt electrode surfaces by the use of 13C spin-echo NMR studies of generated from methanol electrosorption[J]. J Eletronchem Soc, 1990, 137 (1): 367- 368.
doi: 10.1149/1.2086433
|
8 |
CATTANEO A , VILLA D , ANGIONI S , et al. Operando electrochemical NMR microscopy of polymer fuel cells[J]. Energy Environ Sci, 2015, 8 (8): 2383- 2388.
doi: 10.1039/C5EE01668A
|
9 |
BLANC F , LESKES M , GREW C P . In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells[J]. Acc Chem Res, 2013, 46 (9): 1952- 1963.
doi: 10.1021/ar400022u
|
10 |
CHEM T , FENG Z , WU G , et al. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy[J]. J Phys Chem C, 2007, 111 (22): 8005- 8014.
doi: 10.1021/jp071022b
|
11 |
LIU W Q , SONG Y H , WANG X L , et al. The mechanism study of photocatalytic methanol reforming by operando nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2019, 36 (3): 298- 308.
|
|
刘文卿, 宋艳红, 王雪璐, 等. 光催化甲醇重整机理的原位核磁共振研究[J]. 波谱学杂志, 2019, 36 (3): 298- 308.
|
12 |
ROTH D C M , KINDERVATER P , RAICH H P , et al. Continuous 1H and 13C signal enhancement in NMR spectroscopy and MRI using parahydrogen and hollow-fiber membranes[J]. Angew Chem, 2010, 122 (45): 8536- 8540.
doi: 10.1002/ange.201002725
|
13 |
KLIEWER C J , BIERI M , SOMORJAI G A . Hydrogenation of the α, β-unsaturated aldehydes acrolein, crotonaldehyde, and prenal over Pt single crystals: a kinetic and sum-frequency generation vibrational spectroscopy study[J]. J Am Chem Soc, 2009, 131 (29): 9958- 9966.
doi: 10.1021/ja8092532
|
14 |
TSUNG C K , KUHN J N , HUANG W , et al. Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation[J]. J Am Chem Soc, 2009, 131 (16): 5816- 5822.
doi: 10.1021/ja809936n
|
15 |
KLIEWER C J , ALIAGA C , BIERI M , et al. Furan hydrogenation over Pt (111) and Pt (100) single-crystal surfaces and Pt nanoparticles from 1 to 7 nm: a kinetic and sum frequency generation vibrational spectroscopy study[J]. J Am Chem Soc, 2010, 132 (37): 13088- 13095.
doi: 10.1021/ja105800z
|
16 |
PUSHKAREW V V , MUSSELWHITE N , AN K , et al. High structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation reaction network as a function of size and shape of Pt nanoparticles[J]. Nano Lett, 2012, 12 (10): 5196- 5201.
doi: 10.1021/nl3023127
|
17 |
BRATLIE K M , LEE H , KOMVOPOULOS K , et al. Platinum nanoparticle shape effects on benzene hydrogenation selectivity[J]. Nano Lett, 2007, 7 (10): 3097- 3101.
doi: 10.1021/nl0716000
|
18 |
NARAYANAN R , EI-SAYED M A . Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability[J]. J Phys Chem B, 2005, 109 (26): 12663- 12676.
doi: 10.1021/jp051066p
|
19 |
BERHAULT G , BISSON L , THOMAZEAU C , et al. Preparation of nanostructured Pd particles using a seeding synthesis approach-Application to the selective hydrogenation of buta-1, 3-diene[J]. Appl Catal A-Gen, 2007, 327 (1): 32- 43.
doi: 10.1016/j.apcata.2007.04.028
|
20 |
CRESPO-QUESADA M , YARULIN A , JIN M S , et al. Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are most active and selective?[J]. J Am Chem Soc, 2011, 133 (32): 12787- 12794.
doi: 10.1021/ja204557m
|
21 |
KATANO S , KATO H S , KAWAI M , et al. Selective partial hydrogenation of 1, 3-butadiene to butene on Pd(110): ? specification of reactant adsorption states and product stability[J]. J Phys Chem B, 2003, 107 (16): 3671- 3674.
doi: 10.1021/jp022410a
|
22 |
PRASAD K H V , PRASAD K B S , MALLIKARJUNAN M M , et al. Self-poisoning and rate multiplicity in hydrogenation of benzene[J]. J Catal, 1983, 84 (1): 65- 73.
doi: 10.1016/0021-9517(83)90086-6
|
23 |
JENKINS G I , RIDEAL S . The catalytic hydrogenation of ethylene at a nickel surface. Part Ⅱ. The reaction mechanism[J]. J Chem Soc, 1955, 2496- 2500.
doi: 10.1039/jr9550002496
|
24 |
JENKⅡNS G I , RIDEAL S . The catalytic hydrogenation of ethylene at a nickel surface. Part I. The chemisorption of ethylene[J]. J Chem Soc, 1955, 2490- 2496.
doi: 10.1039/jr9550002490
|
25 |
ROONEY J J . The exchange with deuterium of two cycloalkanes on palladium films: π-Bonded intermediates in heterogeneous catalysis[J]. J Catal, 1963, 2 (1): 53- 57.
doi: 10.1016/0021-9517(63)90138-6
|
26 |
LUO M H , LU P , YAO W F , et al. Shape and composition effects on photocatalytic hydrogen production for Pt-Pd Alloy cocatalysts[J]. ACS Appl Mater Interfaces, 2016, 8 (32): 20667- 20674.
doi: 10.1021/acsami.6b04388
|
27 |
GOTTLIEB H E , KOTLYAR V , NUDELMAN A . NMR chemical shifts of common laboratory solvents as trace impurities[J]. J Org Chem, 1997, 62 (21): 7512- 7515.
doi: 10.1021/jo971176v
|
28 |
FRASER R R , RENAUD R N . The steric effect in the platinum-catalyzed exchange reaction between aromatic ring protons and deuterium oxide[J]. J Am Chem Soc, 1966, 88 (19): 4365- 4370.
doi: 10.1021/ja00971a011
|
29 |
ZHAO E W , MALIGAL-GANESH R , DU Y , et al. Surface-mediated hyperpolarization of liquid water from parahydrogen[J]. Chem, 2018, 4 (6): 1387- 1403.
doi: 10.1016/j.chempr.2018.03.004
|
30 |
NELSON N C , MANZANO J S N , SADOW A D , et al. Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure[J]. ASC Catal, 2015, 5 (4): 2051- 2061.
|
31 |
VITOS L , RUBAN A , SKRIVER H L , et al. The surface energy of metals[J]. Surf Sci, 1998, 411 (1/2): 186- 202.
|
32 |
LIN C J , HUANG S H , LAI N C , et al. Efficient room-temperature aqueous-phase hydrogenation of phenol to cyclohexanone catalyzed by Pd nanoparticles supported on mesoporous MMT-1 silica with unevenly distributed functionalities[J]. ACS Catal, 2015, 5 (7): 4121- 4129.
doi: 10.1021/acscatal.5b00380
|
33 |
WANG Y , YAO J , LI H R , et al. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media[J]. J Am Chem Soc, 2011, 133 (8): 2362- 2365.
doi: 10.1021/ja109856y
|
34 |
ZHOU H , HAN B B , LIU T Z , et al. Selective phenol hydrogenation to cyclohexanone over alkali-metal-promoted Pd/TiO2 in aqueous media[J]. Green Chem, 2017, 19 (15): 3585- 3594.
doi: 10.1039/C7GC01318C
|
35 |
LI G F , HAN J Y , WANG H , et al. Role of dissociation of phenol in its selective hydrogenation on Pt (111) and Pd (111)[J]. ACS Catal, 2015, 5 (3): 2009- 2016.
doi: 10.1021/cs501805y
|