[1] De Alba E, Tjandra N. NMR dipolar couplings for the structure determination of biopolymers in solution[J]. Prog Nucl Mag Res Spectrosc, 2002,40: 175-197.
[2] Guntert P. Structure calculation of biological macromolecules from NMR data[J]. Q Rev Biophys, 1998,31:145-237.
[3] Karplus M. Contact electron-spin coupling of nuclear magnetic moments[J]. J Phys Chem, 1959,30: 11-15.
[4] Bystrov V F. Spin-spin couplings and the conformational states of peptide spin systems[J]. Prog Nucl Magn Reson Spectrosc, 1976,10: 41-81.
[5] Hu J S, Bax A. Determination of phi and chi(1) angles in proteins from C13-C13 three bond J couplings measured by three-dimensional heteronuclear NMR. How planar is peptide bond?[J]. J Am Chem Soc, 1997,119: 6 360-6 368.
[6] Tjandra N. Establishing a degree of order: obtaining high-resolution NMR structures from molecular alignment[J]. Structure 1999,7:R205-211.
[7] Prestegard J H,Al-Hashimi H M,Tolman J R, et al. NMR structures of biomolecules using field oriented media and residual dipolar couplings[J]. Q Rev Biophys, 2000,33:371-424.
[8] Bax A,Kontaxis G, Tjandra N. Dipolar couplings in macromolecular structure determination[J]. Method Enzymol, 2001,339:127-174.
[9] Saupe A. Recent results in the field of liquid crystals[J]. Angew Chem- Int Edit Engl, 1968,7:97-112.
[10] Emsley J W. Liquir crystals: general considerations. In “Encyclopedia of Nuclear Magnetic Resonance 4”[M]. (Eds: Grant D M, Harris R K) Chichester: Wiley, 1996.
[11] Sanders C R,Schwonek J P, et al. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR[J]. Biochemistry, 1992,31:8 898-8 905.
[12] Tjandra N,Bax A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium[J]. Science, 1997, 278:1 111-1 114.
[13] Tolman J R,Flanagan J M, Kennedy M A, et al. Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution[J]. Proc Natl Acad Sci USA, 1995,92:9 279-9 283.
[14] Contreras M A,Ubach J, Millet O, et al. Measurement of one bond dipolar couplings through lanthanide-induced orientation of a calciumbinding protein[J]. J Am Chem Soc, 1999,121:8 947-8 948.
[15] Kung H C,Wang K Y, Goljer I, et al. Magnetic alignment of duplex and quadruplex DNAs[J]. J Magn Reson,1995,B109:323-325.
[16] Tjandra N,Grzesiek S,Bax A. Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling[J]. J Am Chem Soc, 1996,118:6 264-6 272.
[17] Woessner D E. Spin relaxation processes in a two-proton system undergoing anisotropic reorirntation[J]. J Chem Phys, 1962,36:1-4.
[18] Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity[J]. J Am Chem Soc, 1982,104:4 546- 559.
[19] Lipari G, Szabo A. Modelfree approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results[J]. J Am Chem Soc, 1982,104:4 546-4 559.
[20] Tolman J R, Prestegard J H. Quantitative J correlation experiment for the accurate measurement of one-bond amide 15N-1H couplings in proteins[J]. J Magn Reson, 1996,B112:245-252.
[21] Ottiger M,Delaglio F, Bax A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra[J].J Magn Reson, 1998,131:373-378.
[22] Dewji N N,Wenger D A, Fujibayashi S, et al. Molecular cloning of the sphingolipid activator protein-1 (SAP-1),the sulfatide sulfatase activator[J]. Biochem Bioph Res Commun, 1986,134:989-994.
[23] Pervushin K,Riek R,Wider G, et al. Attenuated T\-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution[J]. Proc Natl Acad Sci (USA), 1997, 94:12 366-12 371.
[24] Yang D W,Venters R A,Mueller G A, et al. TROSY-based HNCO pulse sequences for the measurement of 1HN-15N,15N-13CO,1HN-13CO,13CO-13Cα and 1HN-13Cα dipolar couplings in 15N,13C,2H-labeled proteins[J]. J Biomol NMR, 1999,14:333-343.
[25] Kontaxis G, Clore G M. Evaluation of cross-correlation effects and measurement of one-bond couplings in proteins with short transverse relaxation times[J]. J Magn Reson, 2000,143:184-196.
[26] Permi P, Annila A. Transverse relaxation optimised spin-state selective NMR experiments for measurement of residual dipolar couplings
[J]. J Biomol NMR, 2000,16:221-227.
[27] Permi P,Rosevear P R, Annila A. A set of HNCO-based experiments for measurement of residual dipolar couplings in 15N,13C,2H)labeled proteins[J]. J Biomol NMR, 2000,17:43-50.
[28] de Alba E,Suzuki M, Tjandra N. Simple multidimensional NMR experiments to obtain different types of one-bond dipolar couplings simultaneously[J]. J Biomol NMR, 2001,19:63-67.
[29] Santoro J, King G C. A constant-time 2D over Bodenhausen experiment for inverse correction of isotopically enriched species[J]. J Magn Reson, 1992,97:202.
[30] Ottiger M,Delaglio F, Marquardt J L, et al. Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination[J]. J Magn Reson, 1998,134:365-369.
[31] Tian F,Fowler J A, Zartler E R, et al. Direct measurement of 1H-1H dipolar couplings in proteins: a complement to traditional NOE measurements[J]. J Biomol NMR, 2000,18:23-31.
[32] Otting G,Ruckert M, Levitt M H, et al. NMR experiments for the sign determination of homonuclear scalar and residual dipolar couplings
[J]. J Biomol NMR, 2000,16:343-346.
[33] Pellecchia M,Vander Kooi C W, Keliikuli K, et al. Magnetization transfer via residualdipolar couplings: application to proton-proton correlations in partially aligned proteins[J]. J Magn Reson, 2000,143:435-439.
[34] Carpmagno T,Peti W, Griesinger C. A new method for the simultaneous measurement of magnitude and sign of 1D-{CH} and 1D-{HH} dipolar couplings in methylene groups[J]. J Biomol NMR, 2000,17:99-109.
[35] Sanders II C R, Landis G C. Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies[J]. Biochemistry, 1995,34: 4 030-4 040.
[36] Saupe A, Englert G. High-resolution nuclear magnetic resonacnce spectra of oriented molecules[J]. Phys Rev Lett, 1963,11:462-464.
[37] Wooton J B,Savitsky G B,Jacobus J,et al. Mehyl group geometry[J]. J Chem Phys, 1979,70:438-442.
[38] Ottiger M, Bax A. Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules
[J]. J Biomol NMR, 1998,12:361-372.
[39] Wang H,Eberstadt M, Olejniczak E T, et al. A liquid crystalline medium for measuring residual couplingc over a wide range of temperatures[J]. J Biomol NMR, 1998,12:443-446.
[40] Cavagnero S, Dyson H J. Improved low pH bicelle system for orienting macromolecules over a wide temperature range[J]. J Biomol NMR, 1999,13:387-391.
[41] Ottiger M, Bax A. Bicelle-based liquid crystals for NMR-measurement of dipolar couplings at acidic and basic pH values[J]. J Biomol NMR, 1999,13:187-191.
[42] Losonczi J A, Prestegard J H. Improved dilute bicelle solutions for high-resolution NMR of biological macromolecules[J]. J Biomol NMR, 1998,12: 447-451.
[43] Clore G M,Starich M R, Groneborn A M. Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses[J]. J Am Chem Soc, 1998,120:10571-10572.
[44] Hansen M R,Mueller L, Pardi A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions[J]. Nature Struc Biol, 1998,5:1 065-1 074.
[45] Lebermann R. The isolation of plant viruses by means of simple coacervates[J]. Virology, 1966,30:341-347.
[46] Zweckstetter M, Bax A. Characterization of molecular alignment in aqueous suspensions of Pf1 bacteriophage[J]. J Biomol NMR,2001, 20:365-377.
[47] Tycko R,Blanco F J, Ishii Y. Alignment of biopolymers in strained gels: A new way to create detectable dipole-dipole couplings in highresolution biomolecular NMR[J]. J Am Chem Soc, 2000,122:9 340-9 341.
[48] Sass H J,Musco G,Stahl S J, et al. Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes[J]. J Biomol NMR, 2000,18:303-309.
[49] Prosser R S,Losonczi J A, Shiyanovskaya I V. Use of a novel aqueous liquid crystalline medium for high-resolution NMR of macromolecules in solution[J]. J Am Chem Soc, 1998,120:11 010-11 011.
[50] Barrientos L G,Dolan C, Groneborn A M. Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings[J]. J Biomol NMR, 2000,16:329-337.
[51] Sass H J,Cordier F,Hoffmann A, et al. Purple membrane induced alignment of biological macromolecules in the magnetic Field[J\. J Am Chem Soc, 1999,121:2 047-2 055.
[52] Koenig B W,Hu J S,Ottiger M, et al. NMR measurement of dipolar couplings in proteins aligned by transient binding to purple membrane fragments[J]. J Am Chem Soc, 1999,121:1 385-1 386.
[53] Fleming K,Gray D,Prasannan S, et al. Cellulose crystallites: A new and robust liquid crystalline medium for the measurement of residual dipolar couplings[J]. J Am Chem Soc, 2000,122:5 224-5 225.
[54] Salsbury N J,Darke A,Chapman D. Deuteron magnetic resonance studies of water associated with phospholipids[J]. Chem Phys Lipids, 1972,8:142-151.
[55] Finer E G. Interpretation of deuteron magnetic resonance spectroscopic studies of the hydration of macromolecules[J]. J Chem Soc Farady T II, 1973,69: 1 590-1 600.
[56] Finer E G,Darke A. Phospholipid hydration studied by deuteron magnetic resonance spectroscorpy[J]. Chem Phys Lipids, 1974,12: 1-16.
[57] Brunner E,Ogle J,Wenzler M,et al. Molecular alignment in proteins: Quantitative evaluation of effects induced in 2D COSY spectra of proteins[J]. Biochem Biophys Commun, 2000,272: 694-698.
[58] Hansen M R,Hanson P,Pardi A. Filamentous bacteriophage for aligning RNA,DNA and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions[J]. Method Enzymol, 2000,317: 220-240.
[59] Ramirez B E, Bax A. Modulation of the alignment tensor of macromolecules dissolved in a dilute liquid crystalline medium[J]. J Am Chem Soc, 1998,120:9 106-9 107.
[60] De Alba E,De Vries L, Farquhar M, et al. Solution structure of human GAIP (G interacting protein): a regulator of G protein signaling[J]. J Mol Biol, 1999,291:927-939.
[61] Tjandra N,Omichinski J G,Gronenborn A M, et al. Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution[J]. Nat Struct Biol, 1997,4:732-738.
[62] Clore G M, Garret D S. R-factor,free R,and complete cross-validation for dipolar coupling refinement of NMR structures[J]. J Am Chem Soc, 1999,121:9 008-9 012.
[63] Tjandra N,Marquardt J L, Clore G M. Direct refinement against proton-proton dipolar couplings in NMR structure determination of macromolecules[J]. J Magn Reson, 2000,142:393-396.
[64] Delaglio F,Kontaxis G, Bax A. Protein structure determination using molecular fragment replacement and NMR dipolar couplings[J]. J Am Chem Soc, 2000,122:2 142-2 143.
[65] Clore G M,Starich M R, Gronenborn A M, et al. Impact of residual dipolar couplings on the accuracy of NMR structures determined from a minimal number of NOE restraints[J]. J Am Chem Soc, 1999,121:6 513-6 514.
[66] Nikolai R,Skrynnikov N R, Kay L E. Assessment of molecular structure using frame-independent orientational restraints derived from residual dipolar couplings[J]. J Biomol NMR, 2000,18:239-252.
[67] Zweckstetter M, Bax A. Prediction of sterically induced alignment in a dilute liquid crystalline phase: Aid to protein structure determination by NMR[J]. J Am Chem Soc, 2000,122:3 791-3 792.
[68] Losonczi J A,Andrec M,Fischer M W F, et al. Order matrix analysis of residual dipolar couplings using singular value decomposition[J]. J Magn Reson, 1999,138:334-342.
[69] Markus M A,Gerstner R B, Draper D E, et al. Refining the overall structure and subdomain orientation of ribosomal protein S4- 41 with dipolar couplings measured by NMR in uniaxial liquid crystalline phases[J]. J Mol Biol, 1999,292:375-387.
[70] Skrynnikov N R,Goto N K, Yang D W, et al. Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with-cyclodextrin[J]. J Mol Biol, 2000,295:1 265-1 273.
[71] Goto N K,Skrynnikov N R,Dahlquist F W, et al. What is the average conformation of bacteriophage T4 lysozyme in solution? A domain orientation study using dipolar couplings measured by solution NMR[J]. J Mol Biol, 2001,308:745-764.
[72] Bolon P J,Al-Hashimi H M, Prestegard J H. Residual dipolar coupling derived orientational constraints on ligand geometry in a 53 KDa protein-ligand complex[J]. J Mol Biol, 1999,293:107-115.
[73] Hus J C,Marion D, Blackledge M. De novo determination of protein structure by NMR using orientational and long-range order restraints[J]. J Mol Biol, 2000,298:927-936.
[74] Mueller G A,Choy W Y, Yang D, et al. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein[J]. J Mol Biol, 2000,300:197-212. |