波谱学杂志 ›› 2005, Vol. 22 ›› Issue (1): 99-111.

• 综述评论 • 上一篇    下一篇

生物医学核磁共振中的模式识别方法

  

  1. 波谱与原子分子物理国家重点实验室(中国科学院武汉物理与数学研究所),湖北 武汉 430071
  • 收稿日期:2004-07-30 修回日期:2004-09-14 出版日期:2005-03-05 发布日期:2005-03-05
  • 基金资助:

    国家自然科学基金(10234070,20475061),“973”(2002CB713806)和CAS(KJCX2-SW-03)资助项目.

Pattern Recognition Methods in Biomedical Magnetic Resonance

  1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (Wuhan Institute of Physics and Mathematics,  Chinese Academy of Sciences),  Wuhan 430071,  China
  • Received:2004-07-30 Revised:2004-09-14 Online:2005-03-05 Published:2005-03-05
  • Supported by:

    国家自然科学基金(10234070,20475061),“973”(2002CB713806)和CAS(KJCX2-SW-03)资助项目.

摘要:

模式识别(PR)是把具体事物进行正确归类的科学,它能解决许多对复杂体系的认识问题. 生物医学核磁共振波谱(NMR)的理解和分析便是其中一种. 在受到病理或者其他刺激后,生物体内的代谢物水平会发生变化,这种变化可以通过液体高分辨核磁共振的手段来观察. 模式识别把这种认识进一步深化,不仅可以将正常状态与病理状态区分开,还能找到是哪些生化指纹导致两种状态的差异,为生理、病理和药理等研究,以及临床诊断提供依据. 模式识别与生物核磁共振波谱的结合,已经发展成为代谢组学研究的关键技术,甚至被称为基于核磁共振的代谢组学. 主要讨论适用于生物医学核磁共振中的模式识别方法及其最新进展.

关键词: 生物医学核磁共振, 液体高分辨核磁共振, 模式识别, 多元统计, 代谢组学

Abstract:

Pattern recognition (PR) is the technology of making a decision on a concrete object which category it belongs to. PR can be used to solve many problems in understanding complex systems. One of its applications is the comprehension and analysis of biomedical magnetic resonance spectroscopy data. Previous studies using high-resolution liquid NMR spectroscopy have shown that the levels of metabolites in biological samples change with the time after pathological or other perturbation. PR can be used not only to identify the differences of the pathological from the normal, but also to find which bio-fingerprints result in such differences, thus supplying valuable information for diagnosis. In this review, various statistical PR methods used in biomedical magnetic resonance spectroscopy are discussed, and the latest progresses in this field are introduced.

Key words: biomedical magnetic resonance, high-resolution nuclear magnetic resonance (HRNMR), pattern recognition (PR), multivariate statistics, metabonomics

中图分类号: