1 |
López-otín C , Matrisian L M . Emerging roles of proteases in tumorsuppression[J]. Nat Rev Cancer, 2007, 7 (10): 800- 808.
doi: 10.1038/nrc2228
|
2 |
Sinha A A , Jamuar M P , Wilson M J , et al. Plasma membrane association of cathepsin B in human prostate cancer: biochemical and immunogold electron microscopic analysis[J]. Prostate, 2001, 49 (3): 172- 184.
doi: 10.1002/pros.1132
|
3 |
MAHMOOD U , TUNG C H , BOGDANOV A JR , et al. Near-infrared optical imaging of protease activity for tumor detection[J]. Radiology, 1999, 213 (3): 866- 870.
doi: 10.1148/radiology.213.3.r99dc14866
|
4 |
HABIBOLLAHI P , FIGUEIREDO J , HEIDARI P , et al. Optical imaging with a Cathepsin B activated probe for the enhanced detection of esophageal adenocarcinoma by dual channel fluorescent upper GI endoscopy[J]. Theranostics, 2012, 2 (2): 227- 234.
doi: 10.7150/thno.4088
|
5 |
RYAN L S , LIPPERT A R . Ultrasensitive chemiluminescent detection of cathepsin B: insights into the new frontier of chemiluminescent imaging[J]. Angew Chem Int Ed Engl, 2018, 57 (3): 622- 624.
doi: 10.1002/anie.201711228
|
6 |
TASSALI N , KOTERA N , BOUTIN C , et al. Smart detection of toxic metal ions, Pb2+ and Cd2+, using a 129Xe NMR-based sensor[J]. Anal Chem, 2014, 86 (3): 1783- 1788.
doi: 10.1021/ac403669p
|
7 |
GAO D L , SUN P , ZHANG X , et al. Interactions between albumin and fatty acids studied by NMR spectroscopy[J]. Chinese J Magn Reson, 2018, 35 (3): 338- 344.
|
|
高东莉, 孙鹏, 张许, 等. 运用NMR研究白蛋白与脂肪酸的相互作用[J]. 波谱学杂志, 2018, 35 (3): 338- 344.
|
8 |
PALANIAPPAN K K , FRANCIS M B , PINES A , et al. Molecular sensing using hyperpolarized xenon NMR spectroscopy[J]. Israel J Chem, 2014, 54 (1/2): 104- 112.
|
9 |
WALKER T , HAPPER W . Spin-exchange optical pumping of noble-gas nuclei[J]. Rev Mod Phys, 1997, 69 (2): 629- 642.
doi: 10.1103/RevModPhys.69.629
|
10 |
ZHOU X , SUN X P , LUO J , et al. Production of hyperpolarized Xe-129 gas without nitrogen by optical pumping at Cs-133 D-2 line in flow system[J]. Chin Phys Lett, 2004, 21 (8): 1501- 1503.
doi: 10.1088/0256-307X/21/8/024
|
11 |
ZHOU X , GRAZIANI D , PINES A . Hyperpolarized xenon NMR and MRI signal amplification by gas extraction[J]. Proc Natl Acad Sci U S A, 2009, 106 (40): 16903- 16906.
doi: 10.1073/pnas.0909147106
|
12 |
ZHAO X C , SUN X P , ZHOU X , et al. Measuring polarization of hyperpolarized xenon-129 gas with low-field NMR[J]. Chinese J Magn Reson, 2016, 33 (3): 458- 467.
|
|
赵修超, 孙献平, 周欣, 等. 超极化气体氙-129的低场NMR测量[J]. 波谱学杂志, 2016, 33 (3): 458- 467.
|
13 |
WANG Y F , DMOCHOWSKI I J . An expanded palette of xenon-129 NMR biosensors[J]. Acc Chem Res, 2016, 49 (10): 2179- 2187.
doi: 10.1021/acs.accounts.6b00309
|
14 |
YUAN C L , GUO Q N , CHEN S Z , et al. A novel molecular cage for hyperpolarized 129Xe based on cucurbit [6] uril nanoparticles[J]. Chinese J Magn Reson, 2019, 36 (4): 472- 480.
|
|
袁晨露, 郭茜旎, 陈世桢, 等. 新型葫芦[6]脲纳米颗粒超极化129Xe"分子笼"研究[J]. 波谱学杂志, 2019, 36 (4): 472- 480.
|
15 |
TASSALI N , KOTERA N , BOUTIN C , et al. Smart detection of toxic metal ions, Pb2+and Cd2+, using a Xe-129 NMR-based sensor[J]. Anal Chem, 2014, 86 (3): 1783- 1788.
doi: 10.1021/ac403669p
|
16 |
ZHANG J , JIANG W P , LUO Q , et al. Rational design of hyperpolarized xenon NMR molecular sensor for the selective and sensitive determination of zinc ions[J]. Talanta, 2014, 122, 101- 105.
doi: 10.1016/j.talanta.2014.01.023
|
17 |
GUO Q N , ZENG Q B , JIANG W P , et al. A molecular imaging approach to mercury sensing based on hyperpolarized Xe-129 molecular clamp probe[J]. Chem Eur J, 2016, 22 (12): 3967- 3970.
doi: 10.1002/chem.201600193
|
18 |
YANG S J , JIANG W P , REN L L , et al. Biothiol xenon MRI sensor based on thiol-addition reaction[J]. Anal Chem, 2016, 88 (11): 5835- 5840.
doi: 10.1021/acs.analchem.6b00403
|
19 |
ZENG Q B , GUO Q N , YUAN Y P , et al. Mitochondria targeted and intracellular biothiol triggered hyperpolarized 129Xe magnetofluorescent biosensor[J]. Anal Chem, 2017, 89 (4): 2288- 2295.
doi: 10.1021/acs.analchem.6b03742
|
20 |
BERTHAULT P , DESVAUX H , WENDLINGER T , et al. Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes[J]. Chemistry, 2010, 16 (43): 41- 46.
|
21 |
RIGGLE B A , WANG Y , DMOCHOWSKI I J . A "smart" Xe-129 NMR biosensor for pH-dependent cell labeling[J]. J Am Chem Soc, 2015, 137 (16): 5542- 5548.
doi: 10.1021/jacs.5b01938
|
22 |
WEI Q , SEWARD G K , HILL P A , et al. Designing Xe-129 NMR biosensors for matrix metalloproteinase detection[J]. J Am Chem Soc, 2006, 128 (40): 13274- 13283.
doi: 10.1021/ja0640501
|
23 |
CHAMBERS J M , HILL P A , AARON J A , et al. Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase[J]. J Am Chem Soc, 2009, 131 (2): 563- 569.
doi: 10.1021/ja806092w
|
24 |
YANG S J , YUAN Y P , JIANG W P , et al. Hyperpolarized Xe-129 magnetic resonance imaging sensor for H2S[J]. Chemistry-A European Journal, 2017, 23 (32): 7648- 7652.
doi: 10.1002/chem.201605768
|
25 |
ROY V , BROTIN T , DUTASTA J P , et al. A cryptophane biosensor for the detection of specific nucleotide targets through xenon NMR spectroscopy[J]. Chemphyschem, 2007, 8 (14): 2082- 2085.
doi: 10.1002/cphc.200700384
|
26 |
KHAN N S , RIGGLE B A , SEWARD G K , et al. Cryptophane-folate biosensor for Xe-129 NMR[J]. Bioconjugate Chem, 2015, 26 (1): 101- 109.
doi: 10.1021/bc5005526
|
27 |
PALANIAPPAN K K , RAMIREZ R M , BAJAJ V S , et al. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor[J]. Angew Chem Int Ed, 2013, 52 (18): 4849- 4853.
doi: 10.1002/anie.201300170
|
28 |
ROSSELLA F , ROSE H M , WITTE C , et al. Design and characterization of two bifunctional cryptophane A-based host molecules for xenon magnetic resonance imaging applications[J]. Chempluschem, 2014, 79 (10): 1463- 1471.
doi: 10.1002/cplu.201402179
|
29 |
WITTE C , MARTOS V , ROSE H M , et al. Live-cell MRI with xenon Hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans[J]. Angew Chem Int Ed, 2015, 54 (9): 2806- 2810.
doi: 10.1002/anie.201410573
|
30 |
ROSE H M , WITTE C , ROSSELLAA F , et al. Development of an antibody-based, modular biosensor for Xe-129 NMR molecular imaging of cells at nanomolar concentrations[J]. Proc Natl Acad Sci U S A, 2014, 111 (32): 11697- 11702.
doi: 10.1073/pnas.1406797111
|
31 |
SCHLUNDT A , KILIAN W , BEYERMANN M , et al. A xenon-129 biosensor for monitoring MHC-peptide interactions[J]. Angew Chem Int Ed, 2009, 48 (23): 4142- 4145.
doi: 10.1002/anie.200806149
|
32 |
BOUTIN C , STOPIN A , LENDA F , et al. Cell uptake of a biosensor detected by hyperpolarized Xe-129 NMR: The transferrin case[J]. Bioorg Med Chem, 2011, 19 (13): 4135- 4143.
doi: 10.1016/j.bmc.2011.05.002
|
33 |
KOTERA N , DUBOST E , MILANOLE G , et al. A doubly responsive probe for the detection of Cys4-tagged proteins[J]. Chem Commun, 2015, 51 (57): 11482- 11484.
doi: 10.1039/C5CC04721H
|
34 |
BROKER L E , HUISMAN C , SPAN S W , et al. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells[J]. Cancer Research, 2004, 64, 27- 30.
doi: 10.1158/0008-5472.CAN-03-3060
|