1 |
VUIK F E, NIEUWENBURG S A, BARDOU M, et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years[J]. Gut, 2019, 68(10): gutjnl-2018-317592.
|
2 |
GLOBAL BURDEN OF DISEASE CANCER COLLABORATION . Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016:a systematic analysis for the global burden of disease study[J]. JAMA On Col, 2018, 4 (11): 1553- 1568.
|
3 |
CONNELL L C , MOTA J M , BRAGHIROLI M I , et al. The rising incidence of younger patients with colorectal cancer: questions about screening, biology, and treatment[J]. Curr Treat Options Oncol, 2017, 18 (4): 23.
doi: 10.1007/s11864-017-0463-3
|
4 |
PETERSE E F P , MEESTER R G S , SIEGEL R L , et al. The impact of the rising colorectal cancer incidence in young adults on the optimal age to start screening: Microsimulation analysis I to inform the American Cancer Society colorectal cancer screening guideline[J]. Cancer, 2018, 124 (14): 2964- 2973.
doi: 10.1002/cncr.31543
|
5 |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41 (1): 19- 28.
doi: 10.3760/cma.j.issn.0253-3766.2019.01.005
|
6 |
ENGSTROM P F , ARNOLETTI J P , BENSON A B , et al. NCCN clinical practice guidelines in oncology: rectal cancer[J]. J Natl Compr Canc Ne, 2009, 7 (8): 838- 881.
doi: 10.6004/jnccn.2009.0057
|
7 |
LAMBIN P , RIOS-VELAZQUEZ E , LEIJENAAR R , et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48 (4): 441- 446.
doi: 10.1016/j.ejca.2011.11.036
|
8 |
徐从斌. MRI与CT在直肠癌诊断及术前分期中价值探究[J]. 影像研究与医学应用, 2018, 2 (24): 152- 153.
doi: 10.3969/j.issn.2096-3807.2018.24.092
|
9 |
CUI S F , WANG X S . The accuracy of MRI in preoperative T staging diagnosis of rectal cancer[J]. Chin J Colorec Dis (Electronic Edition), 2014, 3 (5): 29- 36.
doi: 10.3877/cma.j.issn.2095-3224.2014.05.09
|
|
崔书发, 王锡山. 术前应用MRI评估直肠癌T分期的价值[J]. 中华结直肠疾病电子杂志, 2014, 3 (5): 29- 36.
doi: 10.3877/cma.j.issn.2095-3224.2014.05.09
|
10 |
LIANG C S , HUANG Y Q , HE L , et al. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage Ⅰ-Ⅱ and stage Ⅲ-Ⅳ colorectal cancer[J]. Oncotarget, 2016, 7 (21): 31401- 31412.
doi: 10.18632/oncotarget.8919
|
11 |
DOU Y F , TANG X F , LIU Y Y , et al. T stage prediction of colorectal tumor based on multiparametric functional images[J]. Transl Cancer Res, 2020, 9 (2): 522- 528.
doi: 10.21037/tcr.2019.11.41
|
12 |
KIM J , OH J E , LEE J , et al. Rectal cancer: Toward fully automatic discrimination of T2 and T3 rectal cancers using deep convolutional neural network[J]. Int J Imaging Syst Technol, 2019, 29 (3): 247- 259.
doi: 10.1002/ima.22311
|
13 |
XU X P , WANG H J , DU P , et al. A predictive nomogram for individualized recurrence stratification of bladder cancer using multiparametric MRI and clinical risk factors[J]. J Magn Reson Imaging, 2019, 50 (6): 1893- 1904.
doi: 10.1002/jmri.26749
|
14 |
YUSHKEVICH P A , PIVEN J , HAZLETT H C , et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31 (3): 1116- 1128.
doi: 10.1016/j.neuroimage.2006.01.015
|
15 |
BREIMAN L . Random forest[J]. Machine Learning, 2001, 45 (1): 5- 32.
doi: 10.1023/A:1010933404324
|
16 |
LIAW A , WIENER M . Classification and regression by randomforest[J]. R News, 2002, (2, 3): 18- 22.
|
17 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
|
18 |
VAN GRIETHUYSEN J J M , FEDOROV A , PARMAR C , et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77 (21): e104- e107.
doi: 10.1158/0008-5472.CAN-17-0339
|
19 |
KOOPERBERG C , RUCZINSKI I . Identifying interacting SNPs using Monte Carlo logic regression[J]. Genetic Epidemiology, 2010, 28 (2): 157- 170.
|
20 |
李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
|
21 |
SAUNDERS C , STITSON M O , WESTON J , et al. Support vector machine[J]. Computer Ence, 2002, 1 (4): 1- 28.
|
22 |
BAESENS B , VIAENE S , VAN GESTEL T , et al. Least squares support vector machine classifiers: an empirical evaluation[J]. DTEW Research Report 0003, 2000, 1- 16.
|
23 |
FRIEDMAN J H . Greedy function approximation: A gradient boosting machine[J]. Ann Statist, 2001, 29 (5): 1189- 1232.
doi: 10.1214/aos/1013203450
|
24 |
FRIEDMAN J H . Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38 (4): 367- 378.
|
25 |
PEDREGOSA F , VAROQUAUX G , GRAMFORT A , et al. Scikit-learn: machine learning in python[J]. J Mach Learn Res, 2011, 2825- 2830.
|
26 |
WANG J , LI Z H , SHEN F , et al. The value of high resolution T2WI-based radiomics in the preoperative staging of rectal cancer[J]. Radiol Practice, 2019, 34 (11): 1251- 1254.
|
|
王进, 李智慧, 沈浮, 等. 基于高分辨T2WI的影像组学对直肠癌术前分期的应用价值[J]. 放射学实践, 2019, 34 (11): 1251- 1254.
|
27 |
LAMBIN P , LEIJENAAR R T H , DEIST T M , et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14, 749- 762.
doi: 10.1038/nrclinonc.2017.141
|