波谱学杂志 ›› 2021, Vol. 38 ›› Issue (1): 118-139.doi: 10.11938/cjmr20202826
马聪伟1,2, 杨鸿毅1,2, 钟凯1,2
收稿日期:
2020-04-13
出版日期:
2021-03-05
发布日期:
2020-05-27
通讯作者:
钟凯 Tel: 0551-65595192, E-mail: kzhong@hmfl.ac.cn.
E-mail:kzhong@hmfl.ac.cn
基金资助:
MA Cong-wei1,2, YANG Hong-yi1,2, ZHONG Kai1,2
Received:
2020-04-13
Online:
2021-03-05
Published:
2020-05-27
摘要: 在众多可产生磁共振现象的原子核中,1H核凭借其在生物体中含量高、磁共振信号强的优势,成为磁共振成像的主要研究对象.但其它杂核在生命科学相关研究中同样具有不可替代的独特性,如31P核广泛参与了生物体内的能量代谢过程,是非质子成像研究领域的重要内容.MRI向更高场强的发展使得杂核成像逐渐普及,其核心部件是高质量的1H/31P双调谐射频线圈.本文总结了与1H/31P双调谐射频线圈相关的研究与应用,展示了9.4 T下小鼠脑的质子磁共振成像及磁共振磷谱,并讨论了高场1H/31P双调谐射频线圈的潜在应用价值.
中图分类号:
马聪伟, 杨鸿毅, 钟凯. 高场磁共振成像1H/31P双调谐射频线圈研究进展[J]. 波谱学杂志, 2021, 38(1): 118-139.
MA Cong-wei, YANG Hong-yi, ZHONG Kai. Research Progresses of High-Field MRI 1H/31P Dual-Tuned Radio Frequency Coil[J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 118-139.
[1] CHOI C H, HONG S M, HA Y H, et al. Design and construction of a novel 1H/19F double-tuned coil system using PIN-diode switches at 9.4 T[J]. J Magnc Reson, 2017, 279:11-15. [2] HONG S M, CHOI C H, SHAH N J, et al. Design and evaluation of a 1H/31P double-resonant helmet coil for 3 T MRI of the brain[J]. Phys Med Biol, 2019, 64(3):035003. [3] CHENG T, MAGILL A W, COMMENT A, et al. Ultra-high field birdcage coil:a comparison study at 14.1 T[C]. In 201436th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014:2360-2363. [4] BOMSDORF H, HELZEL T, KUNZ D, et al. Spectroscopy and imaging with a 4 Tesla whole-body MR system[J]. NMR Biomed, 1988, 1(3):151-158. [5] ROBITAILLE P M, WARNER R, JAGADEESH J, et al. Design and assembly of an 8-tesla whole body MRI scanner[J]. J Comput Assist Tomog, 1999, 23(6):808-820. [6] SHAJAN GUNAMONY. Radio frequency coils for ultra-high field magnetic resonance imaging[D]. Tübingen:Eberhard Karls Universität. 2016. [7] JIANG X D, HUANG Y H. Modern Physics, 2000, 6:42-44.江向东,黄艳华.百年诺贝尔物理学奖获得者简况[J].现代物理知识, 2000, 6:42-44. [8] HAHN E L. Spin echoes[J]. Phys Rev, 1950, 80(4):580-594. [9] ERNST R R. Nuclear magnetic double resonance with an incoherent radiofrequency field[J]. J Chem Phys, 1966, 45:3845. [10] DAMADIAN R. Tumor detection by nuclear magnetic resonance[J]. Science, 1971, 171:1151-1153. [11] LAUTERBUR P C. Image formation by induced local interactions:examples of employing nuclear magnetic resonance[J]. Nature, 1973, 242:190-191. [12] MANSFIELD P, GRANNELL P K. NMR ‘diffraction’ in solids[J]. J Phys C-Solid State Phys, 1973, 6(22):L422-L426. [13] KONZBUL P, SVEDA K. Shim coils for NMR and MRI solenoid magnets[J]. Meas Sci Technol, 1995, 6(8):1116-1123. [14] 俎栋林,高家红.核磁共振成像-物理原理和方法[M].北京:北京大学出版社, 2014. [15] QIAN C, MASAD I S, ROSENBERG J T, et al. A volume birdcage coil with an adjustable sliding tuner ring for neuroimaging in high field vertical magnets:ex and in vivo applications at 21.1 T[J]. J Magn Reson, 2012, 221:110-116. [16] TOKUMITSU T, TOYODA I, AIKAWA M. A low-voltage, high-power T/R-switch MMIC using LC resonators[J]. IEEE T Microw Theory, 1995, 43(5):997-1003. [17] TROPP J. The theory of the bird-cage resonator[J]. J Magn Reson, 1989, 82(1):51-62. [18] PURCELL E M, TORREY H C, POUND R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Phys Rev, 1946, 69:37. [19] IBRAHIM T S, ABDULJALIL A M, BAERTLEIN B A, et al. Analysis of B1 field profiles and SAR values for multi-strut transverse electromagnetic RF coils in high field MRI applications[J]. Phys Med Biol, 2001, 46(10):2545-2555. [20] ZHANG X L, UGURBIL K, CHEN W. A microstrip transmission line volume coil for human head MR imaging at 4 T[J]. J Magn Reson, 2003, 161(2):242-251. [21] VAUGHAN T. TEM body coils[J]. eMagRes, 2012, 1(2). http://doi.org/10.100219780470034590.emrstm1125. [22] BOGDANOV G, LUDWIG R. Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging[J]. Magn Reson Med, 2002, 47(3):579-593. [23] SURYAN G. Nuclear resonance in flowing liquids[J]. P Indian A S, 1951, 33(2):107. [24] ACKERMAN J, GROVER T, WONG G, et al. Mapping of metabolites in whole animals by 31P NMR using surface coils[J]. Nature, 1980, 283:167-170. [25] ALFONSETTI M, CLEMENTI V, IOTTI S, et al. Versatile coil design and positioning of transverse-field RF surface coils for clinical 1.5-T MRI applications[J]. MAGMA, 2005, 18(2):69-75. [26] GIOVANNETTI G, FRIJIA F, ATTANASIO S, et al. Magnetic resonance butterfly coils:Design and application for hyperpolarized 13C studies[J]. Measurement, 2019, 46(9):3282-3290. [27] KUMAR A, BOTTOMLEY P A. Optimized quadrature surface coil designs[J]. MAGMA, 2008, 21(1,2):41-52. [28] ALFONSETTI M, CLEMENTI V, IOTTI S, et al. Versatile coil design and positioning of transverse-field RF surface coils for clinical 1.5-T MRI applications[J]. MAGMA, 2005, 18(2):69-75. [29] GRUBER B, FROELING M, LEINER T, et al. RF coils:A practical guide for nonphysicists[J]. J Magn Reson Imaging, 2018, 48(3):590-604. [30] RAAIJMAKERS A J E, LUIJTEN P R, VAN DEN BERG C A T. Dipole antennas for ultrahigh-field body imaging:a comparison with loop coils[J]. NMR Biomed, 2016, 29(9):1122-1130. [31] RAAIJMAKERS A J, LAGENDIJK J J, KLOMP D W, et al. Boosting B1 efficiency for RF transmit surface elements by a radiative antenna design[C]//Proc Intl Soc Mag Reson Med, 2009, 17:4764. [32] LATTANZI R, WIGGINS G C, ZHANG B, et al. Approaching ultimate intrinsic signal-to-noise ratio with loop and dipole antennas[J]. Magn Reson Med, 2018, 79(3):1789-1803. [33] RAAIJMAKERS A J E, IPEK O, KLOMP D W J, et al. Design of a radiative surface coil array element at 7 T:the single-side adapted dipole antenna[J]. Magne Reson Med, 2011, 66(5):1488-1497. [34] LEE W, CLOOS M A, SODICKSON D K, et al. Parallel transceiver array design using the modified folded dipole for 7 T body applications[C]//Proc 21st Annual Meeting ISMRM, Salt Lake City:2013. [35] LAKSHMANAN K, CLOOS M, LATTANZI R, et al. The circular dipole[C]//Proc 22nd Annual Meeting ISMRM, Milan; 2014. [36] RAAIJMAKERS A J E, ITALIAANDER M, VOOGT INGMAR J, et al. The fractionated dipole antenna:A new antenna for body imaging at 7 Tesla[J]. Magn Reson Med, 2016, 75(3):1366-1374. [37] RAAIJMAKERS A J E, KLOMP DENNIS W J, VISSER F, et al. Successful body imaging at 7 Tesla:The fractionated dipole antenna[J]. Proc Intl Soc Mag Reson Med, 2014, 22:0314. [38] WIGGINS G C. Mixing loops and electric dipole antennas for increased sensitivity at 7 Tesla[C]//Proc 21st Annual Meeting ISMRM, Salt Lake City:2013. [39] FUJITA H, ZHENG T H, YANG X Y, et al. RF surface receive array coils:The art of an LC circuit[J]. J Magn Reson Imaging, 2013, 38(1):12-25. [40] ROEMER P B, EDELSTEIN W A, HAYES C E, et al. The NMR phased array[J]. Magn Reson Med, 1990, 16(2):192-225. [41] LEE R F, GIAQUINTO R O, HARDY C J. Coupling and decoupling theory and its application to the MRI phased array[J]. Magn Reson Med, 2002, 48(1):203-213. [42] REYKOWSKI A, WRIGHT S M, PORTER I R. Design of matching networks for low noise preamplifiers[J]. Magn Reson Med, 1995, 33(6):848-852. [43] HOULT D I, RICHARDS R E. The signal-to-noise ratio of the nuclear magnetic resonance experiment[J]. J Magn Reson, 1976, 213(2):329-343. [44] VAUGHAN J T. Ultra-high field magnetic resonance imaging:High-frequency coils[M]//Ultra-high Field Magnetic Resonance Imaging. Springer, Boston, MA, 2006:127-156. [45] VAUGHAN J T, ADRIANY G, GARWOOD M, et al. A detunable TEM volume coil for high field NMR[J]. Magn Reson Med, 2002, 47(5):990-1000. [46] TOYOOKA T, NAGAYAMA K, SUZUKI J, et al. Noninvasive assessment of cardiomyopathy development with simultaneous measurement of topical 1H and 31P magnetic resonance spectroscopy[J]. Circulation, 1992, 86(1):295-301. [47] HUGG J W, MATSON G B, TWIEG D B, et al. P-31 MR spectroscopic imaging (MRSI) of normal and pathological human brains[J]. Magn Reson Imaging, 1992, 10(2):227-243. [48] LU A M, ATKINSON I C, CLAIBORNE T C, et al. Quantitative sodium imaging with a flexible twisted projection pulse sequence[J]. Magn Reson Med, 2010, 63(6):1583-1593. [49] SCHNALL M D, SUBRAMANIAN V H, LEIGH J S, et al. A new double-tuned probe for concurrent H-1 and P-31 NMR[J]. J Magn Reson, 1985, 65(1):122-129. [50] SHEN G X, BOADA F E, THULBORN K R. Dual-frequency, dual-quadrature, birdcage RF coil design with identical B-1 pattern for sodium and proton imaging of the human brain at 1.5 T[J]. Magn Reson Med, 1997, 38(5):717-725. [51] BECK B L. Double-tuned surface coils[J]. eMagRes, 2007. [52] ISAAC G, SCHNALL M D, LENKINSKI R E, et al. A design for a double-tuned birdcage coil for use in an integrated MRI/MRS examination[J]. J Magn Reson, 1990, 89(1):41-50. [53] RATH A R. Design and performance of a double-tuned bird-cage coil[J]. J Magn Reson, 1990, 86(3):488-495. [54] WIGGINS G C, BROWN R, LAKSHMANAN K. High-performance radiofrequency coils for 23Na MRI:brain and musculoskeletal applications[J]. NMR Biomed, 2016, 29(2):96-106. [55] FITZSIMMONS J R, BROOKER H R, BECK B. A transformer-coupled double-resonant probe for NMR imaging and spectroscopy[J]. Magn Reson Med, 1987, 5(5):471-477. [56] FITZSIMMONS J R, BROOKER H R, BECK B. A comparison of double-tuned surface coils[J]. Magn Reson Med, 1989, 10(3):302-309. [57] FITZSIMMONS J R, BECK B L, BROOKER H R. Double resonant quadrature birdcage[J]. Magn Reson Med, 1993, 30(1):107-114. [58] ALECCI M, ROMANZETTI S, KAFFANKE J, et al. Practical design of a 4 Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain[J]. J Magn Reson, 2006, 181(2):203-211. [59] DABIRZADEH A, MCDOUGALL M P. Trap design for insertable second-nuclei radiofrequency coils for magnetic resonance imaging and spectroscopy[J]. Concepts Magn Reson B, 2009, 35(3):121-132. [60] MEYERSPEER M, ROIG E S, GRUETTER R, et al. An improved trap design for decoupling multinuclear RF coils[J]. Magn Reson Med, 2014, 72(2):584-590. [61] WEBB A, SMITH N. 31P spectroscopy in human calf muscle at 7 Tesla using a balanced double-quadrature proton-phosphorus RF coil[C]//Proceedings 18th Scientific Meeting, International Society for Magnetic Resonance in Medicine. Stockholm, Sweden, 2010:3818. [62] HA S, HAMAMURA M J, NALCIOGLU O, et al. A PIN diode controlled dual-tuned MRI RF coil and phased array for multi nuclear imaging[J]. Phys Med Biol, 2010, 55(9):2589-2600. [63] HAN S D, HEO P, KIM H J, et al. Double-layered dual-tuned RF coil using frequency-selectable PIN-diode control at 7-T MRI[J]. Concepts Magn Reson Part B, 2017, 47(4):e21363. [64] VILLA-VALVERDE P, RODRÍGUEZ I, PADRÓ DANIEL, et al. A dual 1H/19F birdcage coil for small animals at 7 T MRI[J]. MAGMA, 2019, 32(1):79-87. [65] ASFOUR A. A three-coil RF probe-head at 2.35 T:potential applications to the 23Na and to the hyperpolarized 129Xe MRI in small animals[C]//2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, 2010. [66] HA Y H, CHOI C H, SHAH N J. Development and Implementation of a PIN-diode controlled, quadrature-enhanced, double-tuned RF coil for sodium MRI[J]. IEEE Trans Med Imaging, 2018, 37(7):1626-1631. [67] BOTTOMLEY P A, HARDY C J, ROEMER P B, et al. Proton-decoupled, overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans[J]. Magn Reson Med, 1989, 12(3):348-363. [68] ALFONSETTI M, SOTGIU A, ALECCI M. Design and testing of a 1.5 Tesla double-tuned (1H/31P) RF surface coil with intrinsic geometric isolation maria[J]. Measurement, 2010, 43(9):1266-1276. [69] RUTLEDGE O, KWAK T, PENG CAO, et al. Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7 T[J]. J Magn Reson, 2016, 267:15-21. [70] KUMAR A, BOTTOMLEY P A. Optimized quadrature surface coil designs[J]. MAGMA, 2008, 21(1,2):41-52. [71] MURPHY-BOESCH J. Double-tuned birdcage coils:Construction and tuning[J]. eMagRes, 2007:1-7. [72] MURPHY-BOESCH J, SRINIVASAN R, CARVAJAL L, et al. Two configurations of the four-ring birdcage coil for 1H imaging and 1H-decoupled 31P spectroscopy of the human head[J]. J Magn Reson B, 1994, 103(2):103-114. [73] DUAN Y S, PETERSON B S, LIU F, et al. Computational and experimental optimization of a double-tuned 1H/31P four-ring birdcage head coil for MRS at 3 T[J]. J Magn Reson Imaging, 2009, 29(1):13-22. [74] HA Y H, CHOI C H, WORTHOFF W A, et al. Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T[J]. J Magn Reson, 2018, 286:110-114. [75] LEACH M O, HIND A, SAUTER R, et al. The design and use of a dual-frequency surface coil providing proton images for improved localization in 31P spectroscopy of small lesions[J]. Med Phys, 1986, 13(4):510-513. [76] CHANG L H, CHEW W M, WEINSTEIN P R, et al. A balanced-matched double-tuned probe for in vivo 1H and 31P NMR[J]. J Magn Reson, 1987, 72(1):168-172. [77] MATSON G B, VERMATHEN P, HILL T C. A practical double-tuned 1H/31P quadrature birdcage head coil optimized for 31P operation[J]. Magn Reson Med, 1999, 42(1):173-182. [78] KLOMP D W J, COLLINS D J, VAN DEN BOOGERT H J, et al. Radio-frequency probe for 1H decoupled 31P MRS of the head and neck region[J]. Magn Reson Imaging, 2001, 19(5):755-759. [79] THAPA B, KAGGIE J, SAPKOTA N, et al. Design and development of a general-purpose transmit/receive (T/R) switch for 3 T MRI, compatible for a linear, quadrature and double-tuned RF coil[J]. Concepts Magn Reson Part B, 2016, 46(2):56-65. [80] RETICO A, VITACOLONNA A, GALANTE A, et al. A 7 T double-tuned (1H/31P) microstrip surface RF coil for the IMAGO7 MR scanner[C]//2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings. IEEE, 2015:84-88. [81] HONG S M, CHOI C H, MAGILL A W, et al. Design of a quadrature 1H/31P coil using bent dipole antenna and 4-channel loop at 3 T MRI[J]. IEEE Trans Med Imaging, 2018, 37(12):2613-2618. [82] DU F, LIU S P, CHEN Q Y, et al. Numerical simulation and evaluation of a four-channel-by-four-channel double-nuclear RF coil for 1H MRI and 31P MRSI at 7 T[J]. IEEE T Magn, 2018, 54(11):1-5. [83] LEE B Y, ZHU X H, WOO M K, et al. Interleaved 31P MRS imaging of human frontal and occipital lobes using dual RF coils in combination with single-channel transmitter-receiver and dynamic B0 shimming[J]. NMR Biomed, 2018, 31(1):e3842. [84] GOLUCH S, KUEHNE A, MEYERSPEER M, et al. A form-fitted three channel 31P, two channel 1H transceiver coil array for calf muscle studies at 7 T[J]. Magn Reson Med, 2015, 73(6):2376-2389. [85] BROWN R, KHEGAI O, PARASOGLOU P. Magnetic resonance imaging of phosphocreatine and determination of BOLD kinetics in lower extremity muscles using a dual-frequency coil array[J]. Sci Rep, 2016, 6:30568. [86] BROWN R, LAKSHMANAN K, MADELIN G, et al. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy[J]. Neuroimage, 2016, 124:602-611. [87] AVDIEVICH N I, RUHM L, DORST J, et al. Double-tuned 31P/1H human head array with high performance at both frequencies for spectroscopic imaging at 9.4 T[J]. Magn Reson Med, 2020, 84(2):1076-1089. [88] ZHANG X, UGURBIL K, CHEN W. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy[J]. Magn Reson Med, 2001, 46(3):443-450. [89] PESHKOVSKY A S, KENNAN R P, FABRY M E, et al. Open half-volume quadrature transverse electromagnetic coil for high-field magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(4):937-943. [90] AVDIEVICH N I, HETHERINGTON H P. 4 T Actively detuneable double-tuned 1H/31P head volume coil and four-channel 31P phased array for human brain spectroscopy[J]. J Magn Reson, 2007, 186(2):341-346. [91] VAN UDEN M J, PEETERS T H, RIJPMA A, et al. An 8-channel receive array for improved 31P MRSI of the whole brain at 3 T[J]. Magn Reson Med, 2019, 82(2):825-832. |
[1] | 冯涛, 陈俊飞, 张震, 杨春升, 张志, 刘朝阳. 低场核磁共振短死时间射频线圈与射频开关的设计[J]. 波谱学杂志, 2021, 38(1): 1-11. |
[2] | 廖志文, 陈俊飞, 杨春升, 张志, 陈黎, 肖立志, 陈方, 刘朝阳. 1H/31P双核并行磁共振成像线圈的研究与设计[J]. 波谱学杂志, 2020, 37(3): 273-282. |
[3] | 肖亮, 娄煜堃, 周航宇. 用于SAR估计的基于U-Net网络的快速膝关节模型重建[J]. 波谱学杂志, 2020, 37(2): 144-151. |
[4] | 方仲佩, 孙鹏, 王倩文, 张亮, 刘买利, 张许. 天然同位素丰度野生型酵母细胞色素c构象变化的核磁共振检测[J]. 波谱学杂志, 2019, 36(4): 481-489. |
[5] | 肖雄杰, HU Mary, 张许, HU Jian-zhi. 电离辐射对小鼠肾脏影响的代谢组学研究[J]. 波谱学杂志, 2019, 36(2): 172-181. |
[6] | 唐明学, SCHMIDT Claudia. 利用核磁共振氢谱的哈勒分析获得分子序列取向参数[J]. 波谱学杂志, 2019, 36(2): 138-147. |
[7] | 柴鑫, 孙鹏, 袁斌, 肖雄杰, 张许, 刘买利. 乳制品中胆碱及其衍生物的快速核磁共振检测[J]. 波谱学杂志, 2018, 35(2): 178-187. |
[8] | 高鹏飞, 褚琳琳, 杨翼, 江纪锋, 王嘉琛, 姚叶锋, 周兵. 通过高斯加权的1H CPMG弛豫曲线测定橡胶交联密度[J]. 波谱学杂志, 2018, 35(1): 60-74. |
[9] | 高鹏飞, 褚琳琳, 杨翼, 江纪锋, 王嘉琛, 姚叶锋, 周兵. 三种测量橡胶交联密度的核磁共振方法比较[J]. 波谱学杂志, 2017, 34(4): 408-420. |
[10] | 赵红波, 柴晓飞, 王岳华, 史会兵, 张锐, 董昭苹, 韩立霞. 1H NMR法对改性沥青中SBS含量精确测试的研究[J]. 波谱学杂志, 2017, 34(3): 323-328. |
[11] | 曹朝暾, 罗青青, 曹晨忠. 取代基效应对二芳基硝酮CH=N(O)桥基1H NMR化学位移的影响[J]. 波谱学杂志, 2017, 34(1): 69-77. |
[12] | 赖华, 李想, 刘兴, 朱小明, 谭雄文, 熊平生. 31P NMR在阻燃剂DOPO合成中的应用[J]. 波谱学杂志, 2017, 34(1): 61-68. |
[13] | 郭强胜, 刘明珂, 禹珊, 沈婷婷, 宋巍, 许旭. 定量核磁共振法同时测定复合维生素B片中B1、B2、烟酰胺和泛酸钙[J]. 波谱学杂志, 2016, 33(3): 442-451. |
[14] | 张彬锋, 朱雪荣. 两种聚醚改性有机硅表面活性剂的NMR数据分析[J]. 波谱学杂志, 2016, 33(3): 432-441. |
[15] | 郑津, 薛惠芸, 林彩凤, 林德洵, 陆嘉, 杨慧, 王相鹏, 邹友思. 核磁共振氢谱法鉴定油性圆珠笔文书的书写时间[J]. 波谱学杂志, 2016, 33(2): 198-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||