1 |
WORLD HEALTH ORGANIZATION. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020 questions and answers (Q & A)[OL]. https://www.iarc.fr/faq/latest-global-cancer-data-2020-qa.
|
2 |
ANAS E M A , MOUSAVI P , ABOLMAESUMI P . A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy[J]. Med Image Anal, 2018, 48, 107- 116.
doi: 10.1016/j.media.2018.05.010
|
3 |
WANG L J , SU X Y , LI Y , et al. Segmentation of right ventricle in cardiac cine MRI using COLLATE fusion-based multi-atlas[J]. Chinese J Magn Reson, 2018, 35 (4): 407- 416.
|
|
王丽嘉, 苏新宇, 李亚, 等. 基于COLLATE融合多图谱的心脏电影MRI右心室分割[J]. 波谱学杂志, 2018, 35 (4): 407- 416.
|
4 |
WANG X L . Application of histogram analysis of dynamic enhanced MRI quantitative parameter in the diagnosis of prostate cancer[J]. Chinese Journal of CT and MRI, 2020, 18 (12): 110- 113.
doi: 10.3969/j.issn.1672-5131.2020.12.035
|
|
王晓蕾. 动态增强MRI定量参数直方图分析在诊断前列腺癌中的应用[J]. 中国CT和MRI杂志, 2020, 18 (12): 110- 113.
doi: 10.3969/j.issn.1672-5131.2020.12.035
|
5 |
PALUMBO P , MANETTA R , IZZO A , et al. Biparametric (bp) and multiparametric (mp) magnetic resonance imaging (MRI) approach to prostate cancer disease: a narrative review of current debate on dynamic contrast enhancement[J]. Gland Surg, 2020, 9 (6): 2235- 2247.
doi: 10.21037/gs-20-547
|
6 |
LIU K W , LIU Z L , WANG X Y , et al. Prostate cancer diagnosis based on cascaded convolutional neural networks[J]. Chinese J Magn Reson, 2020, 37 (2): 152- 161.
|
|
刘可文, 刘紫龙, 汪香玉, 等. 基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 2020, 37 (2): 152- 161.
|
7 |
VAFAIE R, ALIREZAIE J, BABYN P. Fully automated model-based prostate boundary segmentation using markov random field in ultrasound images[C]//Fremantle, WA, Australia: International Conference on Digital Image Computing Techniques and Applications (DICTA), 2012.
|
8 |
KWAK J T , SANKINENI S , XU S , et al. Correlation of magnetic resonance imaging with digital histopathology in prostate[J]. Int J Comput Ass Rad, 2016, 11 (4): 657- 666.
|
9 |
QIAN C J , WANG L , GAO Y Z , et al. In vivo MRI based prostate cancer identification with random forests and auto-context model[J]. Comput Med Imag Grap, 2014, 52, 44- 57.
|
10 |
KORSAGER A S , FORTUNATI V , FEDDE VDL , et al. The use of atlas registration and graph cuts for prostate segmentation in magnetic resonance images[J]. Med Phys, 2015, 42 (4): 1614- 1624.
doi: 10.1118/1.4914379
|
11 |
TIAN Z Q , LIU L Z , ZHANG Z F , et al. Superpixel-based segmentation for 3D prostate MR images[J]. IEEE Trans Med Imag, 2016, 35 (3): 791- 801.
doi: 10.1109/TMI.2015.2496296
|
12 |
LI C M , XU C Y , GUI C F , et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE T Image Process, 2010, 19 (12): 3243- 3254.
doi: 10.1109/TIP.2010.2069690
|
13 |
ZHANG Y D , PENG J C , LIU G , et al. Research on the segmentation method of prostate magnetic resonance image based on level set[J]. Chinese Journal of Scientific Instrument, 2017, 38 (2): 416- 424.
|
|
张永德, 彭景春, 刘罡, 等. 基于水平集的前列腺磁共振图像分割方法研究[J]. 仪器仪表学报, 2017, 38 (2): 416- 424.
|
14 |
ZHU Z H , YAN S J , RUAN Y , et al. Segmentation of prostate magnetic resonance images based on an improved distance regularized level set evolution (DRLSE) model[J]. Chinese J Magn Reson, 2020, 37 (4): 447- 455.
|
|
朱泽华, 闫士举, 阮渊, 等. 基于改进DRLSE模型的前列腺磁共振图像分割[J]. 波谱学杂志, 2020, 37 (4): 447- 455.
|
15 |
LI C M , KAO C Y , GORE J C , et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE T Image Process, 2008, 17 (10): 1940- 1949.
doi: 10.1109/TIP.2008.2002304
|
16 |
JIANG H Y , FENG R J , GAO X H . Level set based on signed pressure force function and its application in liver image segmentation[J]. Wuhan University Journal of Natural Sciences, 2011, 16 (3): 265- 270.
doi: 10.1007/s11859-011-0748-5
|
17 |
ZHANG K H , SONG H H , ZHAND L . ZHANG. Active contours driven by local image fitting energy[J]. Pattern Recogn, 2010, 43 (4): 1199- 1206.
doi: 10.1016/j.patcog.2009.10.010
|
18 |
KARIMI D , ZENG Q , MATHUR P , et al. Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images[J]. Med Image Anal, 2019, 57, 186- 196.
doi: 10.1016/j.media.2019.07.005
|
19 |
MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Stanford, CA, USA: 2016 Fourth International Conference on 3D Vision (3DV), 2016.
|
20 |
OJALA T , PIETIKAINEN M , MAENPAA T . Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE T Pattern Anal, 2002, 7 (24): 971- 987.
|
21 |
OSHER S , FEDKIW R . Level set methods and dynamic implicit surfaces[M]. New York: Springer-Verlag, 2002.
|
22 |
ZHAO H K , CHAN T , MERRIMAN B , et al. A variational level setapproach to multiphase motion[J]. J Comput Phys, 1996, 127 (1): 179- 195.
doi: 10.1006/jcph.1996.0167
|
23 |
OTSU N . A threshold selection method from gray-level histogram[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66.
doi: 10.1109/TSMC.1979.4310076
|
24 |
LI C M , HUANG R , DING Z H , et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[J]. IEEE T Image Process, 2011, 20 (7): 2007- 2016.
doi: 10.1109/TIP.2011.2146190
|
25 |
XU C Y, YEZZI A, PRINCE J L. On the relationship between parametric and geometric active contours[C]//Pacific Grove, CA, USA: Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000. doi: 10.1109/ACSSC.2000.911003.
|
26 |
ZHANG K , ZHANG L , SONG H , et al. Active contours with selective local or global segmentation: A new formulation and level set method[J]. Image Vision Comput, 2010, 28 (4): 668- 676.
doi: 10.1016/j.imavis.2009.10.009
|
27 |
CHAN T F , VESE L A . Active contours without edges[J]. IEEE T Image Process, 2001, 10 (2): 266- 277.
doi: 10.1109/83.902291
|
28 |
GEERT L , ROBERT T , WENDY V D V , et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge[J]. Med Image Anal, 2014, 18 (2): 359- 373.
doi: 10.1016/j.media.2013.12.002
|
29 |
MAHAPATRA D , BUHMANN J M . Visual saliency-based active learning for prostate magnetic resonance imaging segmentation[J]. J Med Imaging, 2016, 3 (1): 014003.
doi: 10.1117/1.JMI.3.1.014003
|
30 |
KARIMI D , SAMEI G , KESCH C , et al. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models[J]. Int J Comput Ass Rad, 2018, 13 (4): 1- 9.
|