波谱学杂志 ›› 2022, Vol. 39 ›› Issue (1): 20-32.doi: 10.11938/cjmr20212912
收稿日期:
2021-04-26
出版日期:
2022-03-05
发布日期:
2021-05-17
通讯作者:
李雪松
E-mail:lixuesong@bit.edu.cn
基金资助:
Yan-yan LI1,Lv LI2,Xue-song LI1,*(),Hua GUO2
Received:
2021-04-26
Online:
2022-03-05
Published:
2021-05-17
Contact:
Xue-song LI
E-mail:lixuesong@bit.edu.cn
摘要:
高欠采倍数的动态磁共振图像重建具有重要意义,是同时实现高时间分辨率和高空间分辨率动态对比度增强成像的重要环节.本研究提出一种结合黄金角变密度螺旋采样、并行成像和基于同伦l0范数最小化的压缩感知的图像重建的三维动态磁共振成像方法.黄金角变密度螺旋采样轨迹被用来连续获取k空间数据,具有数据采集效率高、对运动不敏感等优点.在重建算法中,将多线圈稀疏约束应用于时间总变分域,使用基于l0范数最小化的非线性重建算法代替传统的l1范数最小化算法,进一步提高了欠采样率.仿真实验和在体实验表明本文所提的方法在保持图像质量的同时,也可以实现较高的空间分辨率和时间分辨率,初步验证了基于同伦l0范数最小化重建在三维动态磁共振成像上的优势和临床价值.
中图分类号:
李嫣嫣,李律,李雪松,郭华. 基于同伦l0范数最小化重建的三维动态磁共振成像[J]. 波谱学杂志, 2022, 39(1): 20-32.
Yan-yan LI,Lv LI,Xue-song LI,Hua GUO. 3D Dynamic MRI with Homotopic l0 Minimization Reconstruction[J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 20-32.
表1
基于同伦l0最小化的算法实现
目标函数: |
输入:F –非均匀快速傅里叶变换算子 S –线圈敏感度图 m – k空间测量数据 |
输出:d –目标函数的数值近似解 |
初始化: |
迭代:while |
while |
使用共轭梯度法求解 end |
end |
1 |
LIU J , SPINCEMAILLE P , CODELLA N C , et al. Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition[J]. Magn Reson Med, 2010, 63 (5): 1230- 1237.
doi: 10.1002/mrm.22306 |
2 |
OTAZO R . Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI[J]. Magn Reson Med, 2010, 64 (3): 767- 776.
doi: 10.1002/mrm.22463 |
3 |
WRIGHT K L , CHEN Y , SAYBASILI H , et al. Quantitative high-resolution renal perfusion imaging using 3-dimensional through-time radial generalized autocalibrating partially parallel acquisition[J]. Invest Radiol, 2014, 49 (10): 666- 674.
doi: 10.1097/RLI.0000000000000070 |
4 |
BO X , SPINCEMAILLE P , CHEN G , et al. Fast 3D contrast enhanced MRI of the liver using temporal resolution acceleration with constrained evolution reconstruction[J]. Magn Reson Med, 2013, 69 (2): 370- 381.
doi: 10.1002/mrm.24253 |
5 |
CHENG J Y , TAO Z , RUANGWATTANAPAISARN N , et al. Free-breathing pediatric MRI with nonrigid motion correction and acceleration[J]. J Magn Reson Imaging, 2015, 42 (2): 407- 420.
doi: 10.1002/jmri.24785 |
6 |
FENG L , GRIMM R , BLOCK K T , et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI[J]. Magn Reson Med, 2014, 72 (3): 707- 717.
doi: 10.1002/mrm.24980 |
7 |
FENG L , AXEL L , CHANDARANA H , et al. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing[J]. Magn Reson Med, 2016, 75 (2): 775- 788.
doi: 10.1002/mrm.25665 |
8 |
PRINCE M R , YUCEL E K , KAUFMAN J A , et al. Dynamic gadolinium-enhanced 3DFT abdominal MR arteriography[J]. J Magn Reson Imaging, 1993, 3 (6): 877- 881.
doi: 10.1002/jmri.1880030614 |
9 |
ROFSKY N M , LEE V S , LAUB G , et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination[J]. Radiology, 1999, 212 (3): 876- 884.
doi: 10.1148/radiology.212.3.r99se34876 |
10 |
HAGIWARA M , RUSINEK H , LEE V S , et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging-initial experience[J]. Radiology, 2008, 246 (3): 926- 934.
doi: 10.1148/radiol.2463070077 |
11 |
LEE V S , LAVELLE M T , ROFSKY N M , et al. Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality[J]. Radiology, 2000, 215 (2): 365- 372.
doi: 10.1148/radiology.215.2.r00ma16365 |
12 |
MATERNE R , SMITH A M , PEETERS F , et al. Assessment of hepatic perfusion parameters with dynamic MRI[J]. Magn Reson Med, 2002, 47 (1): 135- 142.
doi: 10.1002/mrm.10045 |
13 | BAXTER S , ZHEN J W , JOE B N , et al. Timing bolus dynamic contrast-enhanced (DCE) MRI assessment of hepatic perfusion: Initial experience[J]. J Magn Reson Imaging, 2010, 29 (6): 1317- 1322. |
14 | HAIDER C R , HU H H , CAMPEAU N G , et al. 3D high temporal and spatial resolution contrast-enhanced MR angiography of the whole brain[J]. Magn Reson Med, 2010, 60 (3): 749- 760. |
15 |
PRUESSMANN K P , WEIGER M , SCHEIDEGGER M B , et al. SENSE: sensitivity encoding for fast MRI[J]. Magn Reson Med, 1999, 42 (5): 952- 962.
doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S |
16 |
GRISWOLD M A , JAKOB P M , HEIDEMANN R M , et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magn Reson Med, 2002, 47 (6): 1202- 1210.
doi: 10.1002/mrm.10171 |
17 |
TSAO J , BOESIGER P , PRUESSMANN K P . k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations[J]. Magn Reson Med, 2003, 50 (5): 1031- 1042.
doi: 10.1002/mrm.10611 |
18 |
HUANG F , AKAO J , VIJAYAKUMAR S , et al. k-t GRAPPA: A k-space implementation for dynamic MRI with high reduction factor[J]. Magn Reson Med, 2005, 54 (5): 1172- 1184.
doi: 10.1002/mrm.20641 |
19 |
LUSTIG M , DONOHO D L , SANTOS J M , et al. Compressed sensing MRI[J]. IEEE Signal Proc Mag, 2008, 25 (2): 72- 82.
doi: 10.1109/MSP.2007.914728 |
20 |
LUSTIG M , DONOHO D L , PAULY J M . Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58 (6): 1182- 1195.
doi: 10.1002/mrm.21391 |
21 |
KIM Y C , NARAYANAN S S , NAYAK K S . Flexible retrospective selection of temporal resolution in real-time speech MRI using a golden-ratio spiral view order[J]. Magn Reson Med, 2011, 65 (5): 1365- 1371.
doi: 10.1002/mrm.22714 |
22 |
TRZASKO J , MANDUCA A . Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization[J]. IEEE T Med Imaging, 2009, 28 (1): 106- 121.
doi: 10.1109/TMI.2008.927346 |
23 |
WONG A , MISHRA A , FIEGUTH P , et al. Sparse reconstruction of breast MRI using homotopic l0 minimization in a regional sparsified domain[J]. IEEE T Biomed Eng, 2013, 60 (3): 743- 752.
doi: 10.1109/TBME.2010.2089456 |
24 |
MEYER C H , HU B S , NISHIMURA D G , et al. Fast spiral coronary artery imaging[J]. Magn Reson Med, 1992, 28 (2): 202- 213.
doi: 10.1002/mrm.1910280204 |
25 | PRUESSMANN K P, WEIGER M, BORNERT P, et al. A gridding approach for sensitivity encoding with arbitrary trajectories[C]. In: Proc ISMRM 8th Annual Meeting, Denver, 2000, 276. |
26 |
WINKELMANN S , SCHAEFFTER T , KOEHLER T , et al. An optimal radial profile order based on the golden ratio for time-resolved MRI[J]. IEEE T Med Imaging, 2007, 26 (1): 68- 76.
doi: 10.1109/TMI.2006.885337 |
27 |
LIU Q G , WANG S S , YANG K , et al. Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating[J]. IEEE T Med Imaging, 2013, 32 (7): 1290- 301.
doi: 10.1109/TMI.2013.2256464 |
28 |
LIU Q G , WANG S S , YING L , et al. Adaptive dictionary learning in sparse gradient domain for image recovery[J]. IEEE T mage Procss, 2013, 22 (12): 4652- 4663.
doi: 10.1109/TIP.2013.2277798 |
29 |
ZHANG Z Y , QU X B , LIN Y Q , et al. A sparse reconstruction algorithm for NMR spectroscopy based on approximate l0 norm minimization[J]. Chinese J Magn Reson, 2013, 30 (4): 528- 540.
doi: 10.3969/j.issn.1000-4556.2013.04.006 |
张正炎, 屈小波, 林雁勤, 等. 基于近似l0范数最小化的NMR波谱稀疏重建算法[J]. 波谱学杂志, 2013, 30 (4): 528- 540.
doi: 10.3969/j.issn.1000-4556.2013.04.006 |
|
30 | HUBER P J. Robust Statistics[M]. Wiley-Interscience, 1981. |
31 | LI L , ZHOU Z C , YUAN C , et al. Imaging lenticulostriate arteries at 3 Tesla using optimized flow-sensitive black-blood technique[J]. Chinese J Magn Reson, 2016, 33 (4): 528- 538. |
李律, 周赜辰, 苑纯, 等. 基于优化后流动敏感黑血序列的豆纹动脉3 T磁共振成像[J]. 波谱学杂志, 2016, 33 (4): 528- 538. | |
32 |
STONE S S , HALDAR J P , TSAO S C , et al. Accelerating advanced MRI Reconstructions on GPUs[J]. J Parallel Distr Com, 2008, 68 (10): 1307- 1318.
doi: 10.1016/j.jpdc.2008.05.013 |
33 | CHENG H T , WANG S S , KE Z W , et al. A deep recursive cascaded convolutional network for parallel MRI[J]. Chinese J Magn Reson, 2019, 36 (4): 437- 445. |
程慧涛, 王珊珊, 柯子文, 等. 基于深度递归级联卷积神经网络的并行磁共振成像方法[J]. 波谱学杂志, 2019, 36 (4): 437- 445. | |
34 | WANG W T , SU S , JIA S , et al. Reconstruction of simultaneous multi-slice MRI data by combining virtual conjugate coil technology and convolutional neural network[J]. Chinese J Magn Reson, 2020, 37 (4): 8- 22. |
王婉婷, 苏适, 贾森, 等. 基于虚拟线圈和卷积神经网络的多层同时激发图像重建[J]. 波谱学杂志, 2020, 37 (4): 8- 22. |
[1] | 崔阳阳,梁怀彬,朱千,汤伟,高婷婷,刘建仁,杜小霞. 结合局部一致性和低频振幅探究躯体症状障碍患者大脑自发性活动的改变[J]. 波谱学杂志, 2022, 39(1): 64-71. |
[2] | 姚守权,徐俊成,沈明,胡炳文,宋一桥,蒋瑜. 宽带磁共振T/R开关的设计与实现[J]. 波谱学杂志, 2022, 39(1): 115-122. |
[3] | 聂帅,王鹏飞,赵峰,王芳,明刚,邱紫敬,康松柏,梅刚华. 散弹噪声极限稳定度优于1×10-13τ-1/2的铷频标物理系统[J]. 波谱学杂志, 2022, 39(1): 108-114. |
[4] | 胡凯瑞,杨雪,黄志明,辛家祥,魏达秀,姚叶锋. 三自旋体系核自旋单重态的制备与单重态二维谱的实现[J]. 波谱学杂志, 2022, 39(1): 96-107. |
[5] | 徐倩,陈朗,胡翔颖,李从刚,刘乙祥,姜凌. T69E模拟磷酸化修饰对Bcl-2与Nur77相互作用的影响[J]. 波谱学杂志, 2022, 39(1): 87-95. |
[6] | 王瀚苇,吴昊,田静,张俊峰,钟鹏,陈立朝,王舒楠. T2/FLAIR错配征的定量参数在评价较低级别胶质瘤分子分型的诊断价值[J]. 波谱学杂志, 2022, 39(1): 56-63. |
[7] | 王楠,王远军,廉朋. 基于影像组学的直肠癌术前T分期预测[J]. 波谱学杂志, 2022, 39(1): 43-55. |
[8] | 王志超,张记磊,赵羽,华婷,汤光宇,李建奇. 基于神经网络拟合的腹部化学交换饱和转移成像[J]. 波谱学杂志, 2022, 39(1): 33-42. |
[9] | 张菊敏,陈世桢,周欣. 基于动态有机钆纳米颗粒的T1-T2双模态MRI造影剂[J]. 波谱学杂志, 2022, 39(1): 11-19. |
[10] | 贺羽,石致富,赵新星,苏陶,苏吉虎. 新型X波段多功能EPR谱仪的设计与性能[J]. 波谱学杂志, 2022, 39(1): 1-10. |
[11] | 邱先鑫 韩旭 汪耀 丁伟娜 孙雅文 周滟 雷皓 林富春. 网络游戏障碍人群大脑功能网络rich club结构的改变[J]. 波谱学杂志, 0, (): 0-0. |
[12] | 史朝为,石攀,田长麟. 非天然氨基酸在蛋白质动态特性核磁共振研究中的应用[J]. 波谱学杂志, 2021, 38(4): 523-532. |
[13] | 肖瑶,夏长久,易先锋,刘凤庆,刘尚斌,郑安民. 固体核磁共振技术在锡硅分子筛表征中的应用[J]. 波谱学杂志, 2021, 38(4): 571-584. |
[14] | 王子春,黄骏,姜怡娇. 五配位铝强化硅铝固体酸的固体核磁共振研究[J]. 波谱学杂志, 2021, 38(4): 552-570. |
[15] | 陈翰迪,孔海宇,赵侦超,张维萍. 固体核磁共振结合密度泛函理论计算研究SSZ-39分子筛的钠离子落位与铝分布[J]. 波谱学杂志, 2021, 38(4): 543-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||