波谱学杂志 ›› 2021, Vol. 38 ›› Issue (3): 392-402.doi: 10.11938/cjmr20202876

• 研究论文 • 上一篇    下一篇

融合t-分布随机邻域嵌入与自动谱聚类的脑功能精细分区方法

胡颖,王丽嘉,聂生东*()   

  1. 上海理工大学 医学影像工程研究所, 上海 200093
  • 收稿日期:2020-11-25 出版日期:2021-09-05 发布日期:2021-02-03
  • 通讯作者: 聂生东 E-mail:nsd4647@163.com
  • 基金资助:
    国家自然科学基金重点项目(81830052);上海市自然科学基金资助项目(4ZR1427900)

Fine Brain Functional Parcellation Based on t-Distribution Stochastic Neighbor Embedding and Automatic Spectral Clustering

Ying HU,Li-jia WANG,Sheng-dong NIE*()   

  1. Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2020-11-25 Online:2021-09-05 Published:2021-02-03
  • Contact: Sheng-dong NIE E-mail:nsd4647@163.com

摘要:

本文针对目前脑功能分区不够准确的问题,基于静息态功能磁共振数据,提出了一种融合t-分布随机邻域嵌入(t-SNE)与自动谱聚类(ASC)的人脑功能精细分区的算法.首先,基于静息态功能磁共振图像,对需功能划分的脑区与全脑的时间序列作相关分析,得到需划分脑区的功能连接模式;然后,利用t-SNE算法提取高维功能连接模式特征;最后,通过基于本征间隙的ASC算法自动确定聚类数目,并对降维后的脑区特征分类,得到精细划分的脑亚区.模拟种子区域上的实验结果表明,相较谱聚类算法,以及结合主成分分析的谱聚类算法,本文方法对脑功能体素划分更优.进一步将本方法应用到真实人脑的功能分区中,成功地将海马旁回分为左右半球各3个亚区.本研究表明使用t-SNE与ASC融合的算法可提高脑功能分区准确性,是脑功能精细分区、进而构建脑功能图谱的一种有效方法.

关键词: 静息态功能磁共振成像, 功能连接, 功能分区, t-分布随机邻域嵌入, 自动谱聚类

Abstract:

In this paper, a new method for fine brain functional parcellation based on resting-state functional magnetic resonance imaging (rs-fMRI) data was proposed. The method combines the t-distribution stochastic neighbor embedding (t-SNE) and automatic spectral clustering (ASC) algorithms. First, correlation analyses are conducted between the time courses of the brain region to be parcellated and the whole brain. Second, t-SNE is used to extract the high-dimensional functional connectivity patterns. Last, the number of clusters is automatically determined by the ASC algorithm, and to divide the brain region of interest to generate the fine brain subregions. The results of simulated seed regions proved that the method proposed had higher accuracy than the commonly-used spectral clustering and spectral clustering with principal component analysis. Moreover, the method was successfully applied to parcellate the parahippocampal gyrus into 3 functional subregions in the left and right hemispheres. In conclusion, the algorithm combining t-SNE and ASC is an effective method for fine brain functional parcellation and construction of functional brain atlas.

Key words: resting-state fMRI, functional connectivity, functional parcellation, t-SNE, ASC

中图分类号: