[1] Miao J. Reproducing kernels for harmonic Bergman spaces of unit ball. Monatsh Math, 1998, 125: 25-35
[2] Coifman R, Rochberg R. Representation theorems for holomorphic and harmonic functions in Lp. Astérisque, 1980, 77: 11-66
[3] Ren G B. Harmonic Bergman spaces with small exponents in the unit ball. Collect Math, 2002, 53(1): 83-98
[4] Jevti? M, Pavlovi? M. Harmonic Bergman functions on the unit ball in Rn. Acta Math Hungr, 1999, 85: 81-96
[5] Choe B R, Koo H, Nam K. Optimal norm estimate of operators related to the harmonic bergman projection on the ball. Tohoku Math J, 2010, 62(2): 357-374
[6] Liu C W, Zhou L F. Norm of an integral operator related to the harmonic Bergman projection. Integr Equ Oper Theory, 2011, 69: 557-566
[7] Liu C W, Perälä A, Zhong Y. A higer-dimensional analogue of Hilbert's inequality. Preprint
[8] Liu C W. A “deformation estimate” for the toeplitz operators on harmonic Bergman spaces. Proc Amer Math Soc, 2007, 135: 2867-2876
[9] Liu C W. Iterates of a Berezin-type transform. J Math Anal Appl, 2007, 329: 822-829
[10] Kures O, Zhu K. A class of integral operators on the unit ball of Cn. Integr Equ Oper Theory, 2006, 56: 71-82
[11] Forelli F, Rudin W. Projections on spaces of holomorphic functions in balls. Indiana Univ Math J, 1974, 24: 593-602
[12] Dostani? M. Norm of the Berezin transform on Lp spaces. J d'Analyse Math, 2008, 104: 13-23
[13] Liu C W, Zhou L F. On the p norm of the Berezin transform. Illinois J Math, 2012, 56(2): 497-505
[14] Zhu K H. A sharp norm estimate of the Bergman projection on Lp spaces. Contemporary Math, 2006, 404: 199-205
[15] Dostani? M. Two sided norm estimate of the Bergman projection on Lp spaces. Czechoslovak Math J, 2008, 58(133): 569-575
[16] Perälä A. On the optimal constant for the Bergman projection onto the Bloch space. Ann Acad Sci Fenn Math, 2012, 37: 245-249
[17] Perälä A. Bloch space and the norm of the Bergman projection. Ann Acad Sci Fenn Math, 2013, 38: 849-853
[18] Kalaj D, Markovi? M. Norm of the Bergman projection. Math Scand, 2014, 115(1): 143-160
[19] Liu C W, Zhou L F. On the p-norm of an integral operator in the half plane. Canad Math Bull, 2013, 56(3): 593-601
[20] Koo H, Nam K, Yi H. Norm estimation of the harmonic Bergman projection on half-spaces. J Math Soc Japan, 2009, 61: 225-235
[21] Pott S, Reguera M. Sharp Békollé estimates for the Bergman projection. J Funct Anal, 2013, 265(12): 3233-3244
[22] Charpentier P, Dupain Y, Mounkaila M. Estimates for weighted Bergman projections on pseudo-convex domains of finite type in Cn. Complex Var Elliptic Equ, 2014, 59(8): 1070-1095
[23] Dostani? M, Zhu K. Integral operators induced by the Fock kernel. Integr Equ Oper Theory, 2008, 60(2): 217-236
[24] Dostani? M. Norm estimate of the Cauchy transform on Lp(Ω). Integr Equ Oper Theory, 2005, 52(4): 465-475
[25] Hu G E, Zhu Y P. Weighted norm inequalities for the commutators of multilinear sigular integral operators. Acta Math Sci, 2011, 31B(3): 749-764
[26] Erdélyi A, Magnus W, Oberhettinger F, et al. Higher Transcendental Functions, Vol I. New York: McGraw- Hill, 1953
[27] Zhu K H. Operator Theory in Function Spaces. 2nd ed. Providence: Amer Math Soc, 2007 |