[1] Antczak T. The notion of V-r-invexity in differentiable multiobjective programming. J Appl Anal, 2005, 11: 63-79
[2] Antczak T. Optimality and duality for nonsmooth multiobjective programming problems with V-r-invexity. J Global Optim, 2009, 45: 319-334
[3] Ben-Israel A, Mond B. What is invexity? J Austral Math Soc Ser B, 1986, 28: 1-9
[4] Bhatia D, Kumar P. Multiobjective control problem with generalized invexity. J Math Anal Appl, 1995, 189: 676-692
[5] Chen H, Hu C F. On the resolution of the Vasicek-type interest rate model. Optimization, 2009, 58: 809-822
[6] Craven B D. Invex functions and constrained local minima. Bull Austral Math Soc, 1981, 24: 357-366
[7] Daum S, Werner R. A novel feasible discretization method for linear semi-infinite programming applied to basket option pricing. Optimization, 2011, 60: 1379-1398
[8] Ergenç T, Pickl S W, Radde N, Weber G -W. Generalized semi-infinite optimization and anticipatory systems. Int J Comput Anticipatory Syst, 2004, 15: 3-30
[9] Fiacco A V, Kortanek K O, eds. Semi-infinite Programming and Applications. Lecture Notes in Economics and Mathematical Systems, Vol 215. Berlin: Springer, 1983
[10] Giorgi G, Guerraggio A. Various types of nonsmooth invex functions. J Inform Optim Sci, 1996, 17: 137-150
[11] Giorgi G, Mititelu ?t. Convexités généralisées et propriétés. Rev Roumaine Math Pures Appl, 1993, 38: 125-172
[12] Glashoff K, Gustafson S A. Linear Optimization and Approximation. Berlin: Springer, 1983
[13] Goberna M A, López M A. Linear Semi-Infinite Optimization. New York: Wiley, 1998
[14] Goberna M A, López M A, eds. Semi-infinite Programming - Recent Advances. Dordrecht: Kluwer, 2001
[15] Gribik P R. Selected applications of semi-infinite programming//Coffman C V, Fix G J, eds. Constructive Approaches to Mathematical Models. New York: Academic Press, 1979: 171-187
[16] Gustafson S A, Kortanek K O. Semi-infinite programming and applications//Bachem A, et al, eds. Mathematical Programming: The State of the Art. Berlin: Springer, 1983: 132-157
[17] Hanson M A. On sufficiency of the Kuhn-Tucker conditions. J Math Anal Appl, 1981, 80: 545-550
[18] Hanson M A, Mond B. Further generalizations of convexity in mathematical programming. J Inform Optim Sci, 1982, 3: 25-32
[19] Henn R, Kischka P. Über einige Anwendungen der semi-infiniten Optimierung. Zeitschrift Oper Res, 1976, 20: 39-58
[20] Hettich R, ed. Semi-infinite Programming, Lecture Notes in Control and Information Sciences, Vol 7. Berlin: Springer, 1976
[21] Hettich R, Kortanek K O. Semi-infinite programming: theory, methods, and applications. SIAM Review, 1993, 35: 380-429
[22] Hettich R, Zencke P. Numerische Methoden der Approximation und Semi-infinite Optimierung. Stuttgart: Teubner, 1982
[23] Jess A, Jongen H Th, Nerali?, Stein O. A semi-infinite programming model in data envelopment analysis. Optimization, 2001, 49: 369-385
[24] Jeyakumar V, Mond B. On generalised convex mathematical programming. J Austral Math Soc Ser B, 1992, 34: 43-53
[25] Kanniappan P, Pandian P. On generalized convex functions in optimization theory - A survey. Opsearch, 1996, 33: 174-185
[26] López M, Still G. Semi-infinite programming. European J Oper Res, 2007, 180: 491-518
[27] Martin D H. The essence of invexity. J Optim Theory Appl, 1985, 47: 65-76
[28] Miettinen K M. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers, 1999
[29] Mititelu ?t. Invex functions. Rev Roumaine Math Pures Appl, 2004, 49: 529-544
[30] Mititelu ?t. Invex sets and nonsmooth invex functions. Rev Roumaine Math Pures Appl, 2007, 52: 665-672
[31] Mititelu ?t, Postolachi M. Nonsmooth invex functions via upper directional derivative of Dini. J Adv Math Stud, 2011, 4: 57-76
[32] Mond B, Smart I. Duality and sufficiency in control problems with invexity. J Math Anal Appl, 1988, 136: 325-333
[33] Mond B, Weir T. Generalized concavity and duality//Schaible S, Ziemba W T, eds. Generalized Concavity in Optimization and Economics. New York: Academic Press, 1981: 263-279
[34] Nerali? L, Stein O. On regular and parametric data envelopment analysis. Math Methods Oper Res, 2004, 60: 15-28
[35] Pitea A, Postolache M. Duality theorems for a new class of multitime multiobjective variational problems. J Global Optimization, 2012, 54(1): 47-58
[36] Pitea A, Postolache M. Minimization of vectors of curvilinear functionals on the second order jet bundle: Necessary conditions. Optimization Letters, 2012, 6(3): 459-470
[37] Pitea A, Postolache M. Minimization of vectors of curvilinear functionals on the second order jet bundle: Sufficient efficiency conditions. Optimization Letters, 2012, 6(8): 1657-1669
[38] Sawaragi Y, Nakayama H, Tanino T. Theory of Multiobjective Optimization. New York: Academic Press, 1986
[39] Stein O. Bilevel Strategies in Semi-infinite Programming. Boston: Kluwer, 2003
[40] Verma R U. Weak ε-efficiency conditions for multiobjective fractional programming. Appl Math Comput, 2013, 219: 6819-6827
[41] Verma R U. Second-order (Φ, η, ρ, θ)-invexities and parameter-free ε-efficiency conditions for multiobjective discrete minmax fractional programming problems. Adv Nonlinear Variational Inequalities, 2014, 17(1): 27-46
[42] Verma R U. New ε-optimality conditions for multiobjective fractional subset programming problems. Trans Math Prog Appl, 2013, 1(1): 69-89
[43] Verma R U. Parametric duality models for multiobjective fractional programming based on new generation hybrid invexities. J Appl Funct Anal, 2015, 10(3/4): 234-253 |